GCE

Physics A

Advanced GCE G485

Fields, Particles and Frontiers of Physics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Convention used when marking scripts

WRONG PHYSICS OR EQUATION - indicate by ? on scoris
No credit is given for correct substitution, or subsequent arithmetic, in a physically incorrect equation.
ERROR CARRIED FORWARD - indicate by ECF on scoris
Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers.

ARITHMETIC ERROR - indicate by AE on scoris

Deduct 1 mark for the error and then follow through the working/calculation giving full credit for subsequent marks if there are no further errors. The ruling also includes power of ten (POT).

TRANSCRIPTION ERROR - indicate by ^ on scoris
This error is when there is incorrect transcription of data from the question, formulae booklet or previous answer. For example 1.6×10^{-19} has been written down as 6.1×10^{-19} or 1.6×10^{19}. Deduct the relevant mark and then follow through the working giving full credit for subsequent marks.

SIGNIFICANT FIGURES - indicate by SF on scoris
Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. An error in significant figures is penalised only once per paper.

BENEFIT OF DOUBT - indicate by BOD on scoris
This mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.

RUBRIC INFRINGEMENT

If the candidate crosses out an answer but does not make any other attempt, then the work that is crossed out should be marked and the marks awarded without penalty.

CONTRADICTION - indicate by CON on scoris No mark can be awarded if the candidate contradicts himself or herself in the same response. For example, '... the mass of the particle increases and decreases.'

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{1}$	a		Capacitance $=$ charge per (unit) potential difference	B1	Allow: capacitance $=$ charge / potential difference, charge/pd, charge/voltage but not charge / volt, coulomb /pd (no mixture of quantities and units. Allow over' instead of per
	b	(i)	$\mathrm{Q}=\mathrm{CV}=4.5 \mu \times 6.3=28 .(35)(\mu \mathrm{C})$	B1	Allow: $28(\geq 2 \mathrm{sf})$

Question			Expected Answers	Marks	Additional Guidance
2	a		static / homogeneous infinite / infinite number of stars	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Uniform (density) Do not allow isotropic or fixed
	b	(i)	gradient of graph $=\mathrm{H}_{0}$ value $H_{0}=66 \pm 4$ $\left(\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}\right)$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		(ii)	$\begin{aligned} \text { age } & =1 / \mathrm{H}_{0} \quad\left(\mathrm{H}_{0}=2.1 \times 10^{-18} \mathrm{~s}^{-1}\right) \\ & =\left(1 / 66 \times 3.2 \times 10^{-20} \times 3.2 \times 10^{7}\right) \\ & =1.5 \times 10^{10}\left(1.48 \times 10^{10}\right) \quad \text { (year) } \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ecf from H_{0} value Or correct age in seconds ($4.7 \times 10^{17} \mathrm{~s}$) Answer will depend on H_{0} value in (b)(i) Minus one if Mega or kilo omitted
	C	(i)	$\begin{aligned} \rho_{\mathrm{c}} & =3 \mathrm{H}_{0}{ }^{2} / 8 \pi \mathrm{G} \\ & =\left[3 \times\left(2.1 \times 10^{-18}\right)^{2}\right] /\left(8 \times \pi \times 6.67 \times 10^{-11}\right) \\ & =7.9 \times 10^{-27} \quad\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	If units of H_{0} not converted or converted incorrectly then maximum one out of two ecf from H_{0} value in (b)(i)
		(ii)	if average density of the Universe is less than critical then it will be too small to stop it expanding / it goes on forever if the average density of the Universe is greater than the critical value it will cause the contraction (and produce a big crunch) close to critical value and therefore a universe expands that will go towards a limit / expands at an ever decreasing rate asymptotic	B1 B1 B1	do not allow answers open, closed and flat

2	d		galaxies are moving apart / universe is expanding if galaxies have always been moving apart then at some stage they must have been closer together / or started from a point evidence in red shift either optical / microwave further away the galaxy the faster the speed of recession the existence of a (2.7 K) microwave background radiation there is more helium in the universe than expected MAX 4	(B1) (B1) (B1) (B1) (B1) (B1) B4	Allow stars for galaxies allow from a singularity allow statement that red shift is observed or that blue light becomes red or gamma from big bang has become microwave
			Total	[16]	

Question			Expected Answers	Marks	Additional Guidance
3	a	(i)	uniformly spaced, vertical parallel lines must begin and end on the plates with a minimum of three lines arrow in the correct direction down	B1 B1	ignore any edge effects
		(ii)	$\begin{array}{rl} \mathrm{E}=\mathrm{V} / \mathrm{d} & \mathrm{E} \end{array}=60 / 5 \times 10^{-3},$	A1	
	b	(i)	Use of energy qV and kinetic energy $=1 / 2 \mathrm{mv}^{2}$ $\begin{aligned} & v=[(2 \mathrm{qV}) / \mathrm{m}]^{1 / 2} \\ & v=\left[\left(2 \times 3.2 \times 10^{-19} \times 400\right) / 6.6 \times 10^{-27}\right]^{1 / 2} \\ & v=1.97 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1 M1 AO	
		(ii)	$\begin{aligned} & a=F / m \quad a=E q / m \\ & \left.a=\left(12000 \times 3.2 \times 10^{-19}\right) / 6.6 \times 10^{-27}\right) \\ & =5.82 \times 10^{11}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 A1	Both required for the mark
		(iii)		M1 AO C1 A1	Answer will depend on number of sf used by candidate. Using u $=2 \times 10^{5}$ scores $0 / 2$ Allow slight variation in answers that follow from the candidates working

Question			Expected Answers	Marks	Additional Guidance
4	a		magnetic flux $=$ magnetic flux density x area (perpendicular to field direction)	B1	Allow equation with the symbols identified correctly Do not allow magnetic field or magnetic field strength
	b		$\begin{aligned} \Phi=\text { NBA } & =500 \times 0.035 \times 2.5 \times 10^{-3} \\ & =0.044(0.04375) \end{aligned}$ unit: Wb	C1 A1 B1	[allow for one mark $8.75 \times 10^{-5}(\mathrm{~Wb})$ i.e. $\mathrm{B} \times \mathrm{A}$] Allow: Wb turns and $T \mathrm{~m}^{2}$ and V s
	c	(i)	The component of B perpendicular to the area changes / the idea that the area changes relative to the field direction detail of how it varies / depends on $\cos \theta$ / maximum when field is perpendicular to $B /$ zero when area is parallel to B	B1 B1	Allow the idea that the direction of the field relative to the area of the coil varies with the orientation of the coil Do not allow reference to cutting of the flux by the coil
		(ii)	Induced / e.m.f is proportional / to the rate of change of (magnetic) flux	B1	Allow the emf produced is equal to the rate of change of flux or flux cutting
		(iii)	e.m.f. \max when ϕ is zero or at $0.005 / 0.015 / 0.025$ s e.m.f zero when ϕ is a max or at $0.0 / 0.01 / 0.02 \mathrm{~s}$ e.m.f. and ϕ have the same frequency allow e.m.f and ϕ out of phase by $\pi / 2 /$ emf follows a sin curve emf is the gradient of the graph MAX 3	$\begin{aligned} & \hline \text { (B1) } \\ & \text { B3 } \end{aligned}$	

4	(iv)	$\begin{aligned} \varepsilon & =(\text { change in flux linkage }) / \text { time } \\ & =0.04375 / 0.005\left(8.8 \times 10^{-5} \times 500\right) / 0.005 \\ & =8.75(\mathrm{~V}) \end{aligned}$	C1	[if N omitted then give one mark $(\varepsilon=0.0175)$] [if 10^{-5} omitted then minus 1] [reading error from graph is penalised -1 (should be 8.8 and not 8.4)]
	(v)	Max e.m.f. is twice the original value as the rate of flux change is twice the original	B1 B1	Do not allow just larger Allow: the change in magnetic flux occurs in half the time Allow the max gradient will double
		Total	[14]	

| $\mathbf{5}$ | \mathbf{b} | Advantage: not ionising radiation (as with X-rays) / better
 soft tissue contrast | B1 | Accept can view soft tissue in brain / skull |
| :---: | :---: | :--- | :--- | :--- | :--- |
| Disadvantage: heating effect of metal objects /effect on
 cardiac pacemakers / takes a long time to perform MRI scan | B1 | Do not allow not harmful | | |

Question			Expected Answers	Marks	Additional Guidance
7	a	(i)	e: 0 and -1 \quad N: 15 and $7+$ (antineutrino)	B1	
		(ii)	e: 0 and +1 \quad Si: 30 and $14+$ (neutrino) correct 'neutrino' in each case	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow 1 for +1 Correct symbols required for the neutrinos: v and (Allow v_{e} and Γ_{e}
b		(i)	und \rightarrow udd	B1	Allow $\mathrm{u} \rightarrow \mathrm{d}$
		(ii)	udd \rightarrow und	B1	Allow d $\rightarrow \mathrm{u}$
	c		weak(nuclear force)	B1	
			Total	[6]	

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{8}$	a	(i)	mass of uranium is greater than (the sum of) the mass of the products E $=\Delta \mathrm{mc}^{2}$ OR binding energy of the products is greater than that of uranium energy available is the difference between the binding energies of uranium and the sum of the products	A1	M1

| Question | | Expected Answers | Marks | Additional Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{9}$ | \mathbf{a} | $\mathrm{F}=\mathrm{Q}_{1} \mathrm{Q}_{2} / 4 \pi \varepsilon_{0} \mathrm{r}^{2}$
 $=\left(1.6 \times 10^{-19} \times 1.6 \times 10^{-19}\right) / 4 \pi \varepsilon_{0}\left(2 \times 10^{-15}\right)^{2}$
 $=57.5(\mathrm{~N})$ | $\mathbf{C 1}$ | Allow use of 9×10^{9} instead of $1 / 4 \pi \varepsilon_{0}($ using this gives 57.6$)$
 Allow $\geq 2 \mathrm{sf}(58)$ |
| \mathbf{b} | | attractive strong (nuclear force)
 If correct formula quoted and then AE (e.g. not squaring r or
 not squaring Q) then allow ecf in final answer for 2/3 | | |
| \mathbf{c} | as the proton travels towards the stationary
 proton it experiences a repulsive force that
 slows it down.
 (It needs a high velocity) to get close enough
 (to the proton) / for the (attractive) short range
 force to have any effect | B1 | Do not it holds them together | |

Question		Expected Answers	Marks	Additional Guidance
10	a	ANY ONE from X-rays interact with matter by: the photoelectric effect where an (orbital) electron is ejected from atom / atom is ionised Compton scattering where X -ray scattered by the interaction with (orbital) electron Pair production where X-ray photon interacts with the nucleus / atom and an electron and positron are produced [allow one mark for statement and one for explanation]	(B2) (B2) (B2)	Allow electrons ejected from metal surface if reference is made to free electrons Allow: X-ray diffraction B1 X-ray passes through the 'slits' / atomic gap formed by the atoms B1

	b		$\begin{aligned} I=I_{0} \mathrm{e}^{-\mu \mathrm{\mu x}} \quad 0.1 & =\mathrm{e}^{-\mu 3} \\ 0.5 & =\mathrm{e}^{-\mu \mathrm{x}} \\ \ln 0.5 & / \ln 0.1=\mathrm{x} / 3 \\ \mathrm{x} & =0.903(\mathrm{~mm}) \end{aligned}$	C1 C1 A1	Calculation of $\mu=0.768 \mathrm{C} 1$ Substitution into second equation C1 Allow 0.9 (1sf) If question misread and 0.9 used for change $\mu=0.035$ and x = 19.7 (allow 20) give $2 / 3$
10	C	(i)	Absorption of X-rays by (silver halide molecules) by a photographic film Uses of fluorescent / scintillator/ phosphor Photon releases electron (that is accelerated onto a fluorescent screen) number of electrons increased/multiplied MAX B2 QWC: Phosphor / Intensifier/ it converts X-ray photon into increased number of 'visible' photons	(B1) (B1) (B1) (B1) B2	

| (ii) | Different soft body tissue produce little
 difference in contrast/attenuation
 (Contrast media with) high atomic number / Z
 used / iodine or barium (used to give greater
 contrast)
 liquids injected or swallowed into soft tissue
 areas / or examples of such
 (B1) | This method produces good contrast for soft tissue /for similar
 Z values |
| :--- | :--- | :--- | :--- | :--- |
| (B1) | (B1) | |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre

14-19 Qualifications (General)

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

GCE

Physics A

Advanced GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question		Expected Answer	Mark	Additional Guidance	
$\mathbf{1}$	(a)		$E=\frac{V}{d}=\frac{2400}{9.4 \times 10^{-3}}$ $E=2.55 \times 10^{5}\left(\mathrm{~V} \mathrm{~m}^{-1}\right)$ force $=E \times Q=2.55 \times 10^{5} \times 1.60 \times 10^{-19}$ force $=4.09 \times 10^{-14}(\mathrm{~N})$	C1	

Question			Expected Answer	Mark	Additional Guidance
2	(a)		coulomb per volt	B1	Allow: $1 \mathrm{~F}=1 \underline{\mathrm{CV}^{-1}}$
	(b)	(i)	Electrons flow 'clockwise' / negative to positive These are deposited on (plate) A (and hence becomes negatively charged) or These are removed from (plate) B (and hence become positively charged)	B1 B1	Not: A becomes negative / B becomes positive
		(ii)1	$\begin{aligned} & Q=C \times V=5.4 \times 10^{-9} \times 12 \\ & \text { charge }=6.48 \times 10^{-8}(C) \end{aligned}$	B1	
		(ii)2	$\begin{aligned} & \text { energy }=\frac{1}{2} V^{2} C=\frac{1}{2} \times 12^{2} \times 5.4 \times 10^{-9} \\ & \text { energy }=3.89 \times 10^{-7}(\mathrm{~J}) \end{aligned}$	B1	Possible ecf if Q used from (ii)1
	(c)	(i)	$\begin{aligned} & R=\frac{12}{3.24 \times 10^{-6}} \\ & \text { resistance }=3.7 \times 10^{6}(\Omega) \end{aligned}$	M1 A0	Allow: ' $R=12 / 3.24 \mu$ ' (= 3.7 M ${ }^{\text {a }}$)
		(ii)	$\begin{aligned} & \text { time constant }=\mathrm{CR}=5.4 \times 10^{-9} \times 3.7 \times 10^{6} \text { or } 0.02(\mathrm{~s}) \\ & I=I_{0} e^{-t / C R}=3.24 \times e^{-(0.080 / 0.020)} \\ & \text { current }=0.059(\mu \mathrm{~A}) \end{aligned}$	$\mathrm{C} 1$ A1	Allow: ecf for time constant Allow: 1 mark for 5.9×10^{-n}
	(d)		(Total) resistance of circuit halved / time constant is halved Rate of discharge is doubled / (initial) current is doubled	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
			Total	10	

Question		Expected Answer	Mark	Additional Guidance
3	(a)	Perpendicular out of plane of paper	B1	Allow: 'out of paper' Not: 'up the paper'
	(b)	$\begin{aligned} & \frac{m v^{2}}{R}=B Q v \\ & \text { hence } v=\frac{B Q R}{m} \end{aligned}$	M1 A0	Allow: Use of r instead of R and e instead of Q
	(c)	$\begin{aligned} & \text { speed }=\frac{2 \pi \times 0.18}{2.0 \times 10^{-8}} \text { or } 5.66 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & 5.66 \times 10^{7}=\frac{B \times 1.60 \times 10^{-19} \times 0.18}{1.67 \times 10^{-27}} \quad \text { (A } \\ & B=3.28 \text { (T) } \end{aligned}$ (Any subject)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow : ecf for incorrect value for speed v Alternative : $\begin{align*} t=\left(\frac{2 \pi R}{v}=\right) \frac{2 \pi m}{B Q} & \mathrm{C} 1 \\ B & =\frac{2 \pi \times 1.67 \times 10^{-27}}{2.0 \times 10^{-8} \times 1.60 \times 10^{-19}} \\ B & =3.28(\mathrm{~T}) \tag{C 1} \end{align*}$
	(d)	The force / acceleration is perpendicular to the motion / velocity No work is done	B1 B1	Allow: 'speed' instead of 'velocity'
		Total	7	

Question			Expected Answer	Mark	Additional Guidance
5	(a)		Diagram showing (star,) $1 \mathrm{AU}, 1 \mathrm{pc}$ and angle of 1 arc second Distance from a base length of 1 AU that subtends an angle of 1 (arc) second or Parsec is a distance that gives a (stellar) parallax of 1 second (of arc) / $1 / 3600^{\circ}$	B1 B1	Allow: 1 pc is the distance calculated using: $1 \mathrm{AU} / \tan \left(1 / 3600^{\circ}\right)$ Not: $1 \mathrm{pc}=3.26 \mathrm{ly}$ Not: $1 \mathrm{pc}=3.1 \times 10^{16} \mathrm{~m}$
	(b)	(i)	$\begin{aligned} & \text { distance }(p c)=1 / 0.275 \\ & \text { distance }=3.64(p c) \end{aligned}$	B1	
		(ii)	$\begin{aligned} & \text { distance in } \mathrm{m}=3.1 \times 10^{16} \times 3.64=1.127 \times 10^{17}(\mathrm{~m}) \\ & \text { distance in ly }=1.127 \times 10^{17} / 9.5 \times 10^{15} \\ & \text { distance in ly }=11.9 \end{aligned}$	C1 A1	Possible ecf from (b)(i) Alternative: $\begin{aligned} & 1 \mathrm{pc}=3.26 \mathrm{ly} \\ & \text { distance }=3.26 \times 3.64 \\ & \text { distance } 11.9(\mathrm{y}) \end{aligned}$
			Total	5	

Question			Expected Answer	Mark	Additional Guidance
6	(a)	(i)	Any five from: 1. Gas / dust (cloud) drawn together by gravitational forces 2. Loss in (gravitational) PE / KE increases / PE changes KE / temperature increase 3. Fusion of protons / hydrogen nuclei (produces helium nuclei and energy) 4. A stable star is formed when radiation pressure is equal to gravitational pressure 5. When hydrogen runs out the outer layers of the star expands / core shrinks 6. Red giant formed / eventually (the core becomes) a white dwarf QWC mark for 'correct sequencing of the processes from birth to death'	$\mathrm{B} 1 \times 5$	Allow: 'Gravitational collapse of dust cloud'
		(ii)	Supernova followed by neutron star / black hole	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(b)		$\begin{aligned} & \Delta E=\Delta m c^{2} \\ & \text { energy }=2.0 \times 10^{30} \times 10^{-6} \times\left(3.0 \times 10^{8}\right)^{2} \text { or } 1.8(0) \times 10^{41}(\mathrm{~J}) \\ & \text { time }=1.80 \times 10^{41} / 3.8 \times 10^{26}\left(=4.74 \times 10^{14} \mathrm{~s}\right) \\ & \text { time }=4.74 \times 10^{14} / 3.2 \times 10^{7} \\ & \text { time }=1.5 \times 10^{7}(\mathrm{y}) \end{aligned}$	C1 C1 A1	Alternative: $\begin{array}{ll} \text { rate }=4.22 \times 10^{9}\left(\mathrm{~kg} \mathrm{~s}^{-1}\right) & \mathrm{C} 1 \\ \text { time }=2.0 \times 10^{24} / 4.22 \times 10^{9}\left(=4.74 \times 10^{14} \mathrm{~s}\right) & \mathrm{C} 1 \\ \text { time }=1.5 \times 10^{7}(\mathrm{y}) & \mathrm{A} 1 \end{array}$

Question			Expected Answer	Mark	Additional Guidance
6	(c)	(i)	Any four from: 1. Protons / hydrogen nuclei to produce He nuclei (positrons and neutrinos) 2. There is electrostatic repulsion (between the protons) / The protons repel (each other because of their positive charge) 3. High temperatures $/ 10^{7} \mathrm{~K}$ needed (for fusion) 4. (At high temperatures some of the fast moving) protons come close enough to each other for the strong (nuclear) force (to overcome the electrostatic repulsion) 5. High density / pressure (in the core of the Sun) 6. There is a decrease in mass, hence energy is released / products have greater binding energy	$B 1 \times 4$	Not: 'heat' in place of temperature in 3.
		(ii)	Kinetic (energy) Electromagnetic / photons	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Not: heat / thermal (energy) Not: 'radiation' / 'wave energy' Allow: Gamma
		(iii)	$\begin{aligned} & \mathrm{BE}=4 \times 7.2=28.8(\mathrm{MeV}) \\ & \mathrm{BE}=28.8 \times 1.6 \times 10^{-13} \\ & \mathrm{BE}=4.6 \times 10^{-12}(\mathrm{~J}) \end{aligned}$	C1 A1	Possible ecf if BE value is incorrect
			Total	19	

Question			Expected Answer	Mark	Additional Guidance
7	(a)		The application of a p.d. across a material / crystal causes an expansion / contraction / vibration (ora)	B1	Allow: reference to 'current' instead of p.d / e.m.f
	(b)		Any two from: - Pulses of ultrasound (sent into the body) - Wave / ultrasound / pulse / signal is reflected (at boundary of tissue) - Time of delay used to determine depth / thickness - The fraction of reflected signal is used to identify the tissue A-scan in one direction only / range or distance or depth finding B-scan uses a number of sensors or a sensor in different positions / angles (to build up a 2D/3D image)	$B 1 \times 2$ B1 B1	Allow: The reflected signal / ultrasound /amplitude / intensity is used to identify the tissue Not: 'B-scan is many A-scans’
	(c)	(i)	$\begin{aligned} & Z=\rho c ; \text { density } \rightarrow \mathrm{kg} \mathrm{~m}^{-3} \text { and speed } \rightarrow \mathrm{m} \mathrm{~s}^{-1} \\ & \left(\text { Hence } Z \rightarrow \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A0 } \end{aligned}$	
		(ii)	$\begin{aligned} & \text { fraction }=\frac{(7.14-1.72)^{2}}{(7.14+1.72)^{2}} \\ & \text { fraction }=0.37(4) \end{aligned}$	C1 A1	Allow: 37%
		(iii)	(Acoustic) impedances of media are similar / identical No / reduced reflection (at boundary) Or The gel allows maximum transmission of ultrasound (into the body)	B1 B1	Allow: 'The Zs are the same'
		(iv)	$\begin{aligned} & v=f \lambda \\ & \text { wavelength }=\frac{1590}{1.2 \times 10^{6}}\left(=1.33 \times 10^{-3} \mathrm{~m}\right) \quad \text { (Any subject) } \\ & \text { wavelength }=1.33(\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 1 mark for ${ }^{\text {c }} 4080 / 1.2 \times 10^{6}=3.4 \mathrm{~mm}$ '
		(v)	Small wavelength means finer detail can be seen / greater resolution	B1	
			Total	13	

Question			Expected Answer	Mark	Additional Guidance
8	(a)		Any five from: 1. Intensifier used as X-ray would pass through film 2. Intensifier converts X-ray photon to many visible (light) photons (which are absorbed by film) 3. *Lower exposure / fewer X-rays needed 4. Iodine / barium (used as contrast material) 5. *High Z number / large attenuation coefficient / large absorption coefficient (used to improve image contrast) 6. Contrast media are ingested / injected into the body 7. *Scan shows outline / shape of soft tissue QWC mark is acquired from clear expression of any of the marking points 3,5 or 7	B1 $\times 5$	
	(b)		X-rays produce visible light or In photoelectric effect electrons are emitted	B1	
	(c)	(i)	Any two from: - Simple X-ray is one directional / produces single image - CT image(s) taken at different angles / X-ray tube is rotated - Computer processes data / image constructed from many slices	$\mathrm{B} 1 \times 2$	
		(ii)	Any two from: 1. X-ray image is 2D / CT scan produces 3D image 2. Greater detail / definition / contrast with CT scan / 'soft tissues can be seen' 3. Image can be rotated	B1 $\times 2$	
			Total	10	

Question			Expected Answer	Mark	Additional Guidance	
10	(a)		Spontaneous: the decay cannot be induced / occurs without external influence Random: cannot predict when / which (nucleus) will decay next	B1 B1		
	(b)		The probability of decay of a nucleus per unit time	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow: $\lambda=A / N$ (Any subject) $A=$ activity and $N=$ number of nuclei	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$
	(c)		Living plants / animals absorb carbon(-14) Once dead, the plant does not take in any more carbon(-14) The fraction of $\mathrm{C}-14$ to $\mathrm{C}-12$ (nuclei) or number of $\mathrm{C}-14$ (nuclei) or activity of $\mathrm{C}-14$ (nuclei) measured in dead and living (sample) $x=x_{0} \mathrm{e}^{-2 \mathrm{t}}$ used with data above to estimate the age	B1 B1 M1 A1		
	(d)	(i)1	$\begin{aligned} & \lambda=\ln 2 / T_{1 / 2} \\ & \text { decay constant }=1.24 \times 10^{-4}\left(\mathrm{y}^{-1}\right) \end{aligned}$	B1		
		(i)2	$\begin{aligned} & A=A_{0} e^{-\lambda t} \\ & 0.194=0.249 \times e^{-\left(1.24 \times 10^{-4} x t\right)} \\ & \ln (0.194 / 0.249)=-1.24 \times 10^{-4} t \\ & \text { time }=2.0 \times 10^{3}(\mathrm{y}) \\ & \hline \end{aligned}$	C1 A1		
		(ii)	The activity is (very) small / decay is random	B1		
		(iii)	Activity so low that it cannot be differentiated from the background	B1		
			Total	13		

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

Physics A

Advanced GCE

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks:
These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:

Significant figures are rigorously assessed in the practical skills.
If the data given in a question is to 2 sf, then allow answers to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Additional Guidance.

| Question | | Expected Answers | Marks | Additional guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | (a) | | capacitance $=$ charge $/$ potential difference
 (b)
 (i)
 $V=Q / C$ and $Q=$ constant in series circuit
 $V=\frac{450}{450+150} \times 6.0$
 potential difference $=4.5(\mathrm{~V})$
 Not: charge per volt or coulombs per p.d | |
| | (ii) | Charge $=150 \times 10^{-6} \times 4.5$
 charge $=6.75 \times 10^{-4}(\mathrm{C})$ | A1 | Allow: 1 mark for an answer of $1.5(\mathrm{~V})$
 Note: Using (b)(ii), alternative marking scheme
 $V=6.75 \times 10^{-4} / 150 \times 10^{-6} \quad \mathrm{C1}$
 $V=4.5 \mathrm{~V}$ |
| A1 | | | | |

Question	Expected Answers	Marks	Additional guidance
(iii)	$\begin{aligned} & \frac{1}{2} \times 4.5^{2} \times 150 \times 10^{-6} \text { and } \frac{1}{2} \times 1.5^{2} \times 450 \times 10^{-6} \\ & \text { ratio }=\frac{0.5 \times 4.5^{2} \times 150 \times 10^{-6}}{0.5 \times 1.5^{2} \times 450 \times 10^{-6}} \\ & \text { ratio }=3 \\ & \quad \text { Or } \\ & 1 / 2 Q^{2} / C_{150} \text { and } 1 / 2 Q^{2} / C_{450} \\ & \text { ratio }=C_{450} / C_{150} \\ & \text { ratio }=3 \end{aligned}$	C1 A1 C1 A1	Allow: with or without the 10^{-6} Possible e.c.f. from (b)(i) and (b)(ii) Allow: full credit for correct use of either $1 / 2 Q V$ or $1 / 2 Q^{2} / C$
(iv)	The ratio remains constant The charge / Q is the same for both capacitors	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
	Total	13	

Question			Expected Answers	Marks	Additional guidance
3	(a)		(Electric field strength is the) force per (unit positive) charge	B1	Allow: $E=F / Q, F$ is the force on a (positive) charge Q
	(b)		Parallel and equally spaced lines at right angles to plates Correct upward direction of field shown on at least one field line	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	
	(c)	(i)	An arrow vertically downwards at \mathbf{P}	B1	
		(ii)	$\begin{aligned} & E=\frac{3400}{0.050} \text { or } E=6.8 \times 10^{4}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \\ & a=\frac{E Q}{m} \\ & a=\frac{6.8 \times 10^{4} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \text { or } a=\frac{1.09 \times 10^{-14}}{9.11 \times 10^{-31}} \\ & \text { acceleration }=1.19 \times 10^{16}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \text { or } 1.2 \times 10^{16}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 C1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below $\begin{array}{ll} E=\frac{3400}{0.050 \times 10^{-2}} \text { or } E=6.8 \times 10^{6}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) & \mathrm{C} 1 \\ a=\frac{E Q}{m} & \mathrm{C} 1 \\ a=\frac{6.8 \times 10^{6} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} & \mathrm{~A} 0 \tag{C1} \end{array}$
		(iii)	$\begin{aligned} & t=\frac{0.04}{4.0 \times 10^{7}} \\ & \text { time }=1.0 \times 10^{-9}(\mathrm{~s}) \end{aligned}$	B1	Allow: $1 \times 10^{-9}(\mathrm{~s})$ or $10^{-9}(\mathrm{~s})$
		(iv)	initial vertical velocity $=0$, final vertical velocity $=a t$ vertical velocity $=1.2 \times 10^{16} \times 1.0 \times 10^{-9}$ (Allow: $1 \times 10^{16} \times 1.0 \times 10^{-9}$) vertical velocity $=1.2 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below $\begin{aligned} & \text { vertical velocity }=1.2 \times 10^{18} \times 1.0 \times 10^{-9} \quad \mathrm{M} 1 \\ & \text { vertical velocity }=1.2 \times 10^{9}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad \mathrm{AO} \end{aligned}$

Question	Expected Answers	Marks	Additional guidance
(v)	$\begin{aligned} & v^{2}=\left(4.0 \times 10^{7}\right)^{2}+\left(1.2 \times 10^{7}\right)^{2} \\ & \text { velocity }=4.2 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \text { Or } \\ & v^{2}=\left(4.0 \times 10^{7}\right)^{2}+\left(1 \times 10^{7}\right)^{2} \\ & \text { velocity }=4.1 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (iv)
(vi)	$\begin{aligned} & \mathrm{KE}=1 / 2 m v^{2} \\ & \mathrm{KE}=0.5 \times 9.11 \times 10^{-31} \times\left(4.2 \times 10^{7}\right)^{2} \\ & \text { kinetic energy }=8.04 \times 10^{-16}(\mathrm{~J}) \text { or } 8.0 \times 10^{-16}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (v) Allow: 1 sf answer if the answer comes out as $8.0 \times 10^{-16}(\mathrm{~J})$
(vii)	Graph starts at non-zero value for E_{k} Between 0 and 0.08 (m) the graph has increasing gradient Horizontal line after 0.080 (m)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Note: The E_{k} value for the horizontal line $>E_{\mathrm{k}}$ value at $x=0$
	Total	15	

Question \quad Expected Answers			Marks	Additional guidance
4	(a)	$\begin{aligned} & E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \\ & \frac{(-) 4.0 \times 10^{-9}}{4 \pi \varepsilon_{0} \times\left(1.75 \times 10^{-2}\right)^{2}} \text { and } \frac{5.0 \times 10^{-9}}{4 \pi \varepsilon_{0} \times\left(1.75 \times 10^{-2}\right)^{2}} \\ & E_{\mathrm{B}}=1.17 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \text { and } E_{\mathrm{A}}=1.47 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \\ & \text { field strength }=(1.17+1.47) \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \\ & \text { field strength }=2.64 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \text { or } 2.6 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \\ & \text { direction }=\text { to the left } / \text { towards } \mathrm{B} \end{aligned}$	C1 C1 A1 B1	Ignore signs Allow: 2 marks for $2.9(4) \times 10^{4}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$ when the fields are subtracted Allow: 2 marks for $6.6 \times 10^{4}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$ for using $3.5 \times 10^{-2} \mathrm{~m}$
	(b)	$\begin{aligned} & F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & \text { force }=\frac{4.0 \times 10^{-9} \times 5.0 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times\left(3.5 \times 10^{-2}\right)^{2}} \\ & \text { force }=1.47 \times 10^{-4}(\mathrm{~N}) \end{aligned}$	C1 C1 A0	Ignore signs Allow: ε_{0} in the equation
	(c)	$\begin{aligned} & (\text { weight }=) 4.5 \times 10^{-5} \times 9.81 \text { or }(\text { weight }=) 4.4(1) \times 10^{-4}(\mathrm{~N}) \\ & \tan \theta=\frac{1.5 \times 10^{-4}}{4.41 \times 10^{-4}} \\ & \text { angle }=18.8\left(^{\circ}\right) \text { or } 19\left({ }^{\circ}\right) \end{aligned}$ (Allow: Full credit when angle is determined using a scale diagram)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: weight $=4.5 \times 10^{-5} \times g$ Note: Using force $=1.47 \times 10^{-4}(\mathrm{~N})$ gives an angle of 18.4°; hence allow 18° Allow: 2 marks for $\theta=71^{\circ}$; this is the complementary angle Allow: 1 mark for ' $\tan \theta=\frac{1.5 \times 10^{-4}}{4.5 \times 10^{-5}}, \theta=73^{0}$ ' when mass is used instead of weight.
		Total	9	

Question			Expected Answers	Marks	Additional guidance
Q	(a)		Down(wards)	B1	Note: Can be on Fig. 5.1
	(b)		(Fleming's) left-hand rule	B1	Allow: Thumb in direction of force, first finger in direction of (magnetic) field and second finger in direction of (conventional) current
	(c)	(i)	$\begin{aligned} & \text { force }=B I L=0.080 \times 4.0 \times 5.0 \times 10^{-2} \\ & \text { force }=0.016(\mathrm{~N}) \end{aligned}$	B1	
		(ii)	$\begin{aligned} & \text { reading }=2.500-0.016 \\ & \text { reading }=2.484(\mathrm{~N}) \end{aligned}$ The force on core/magnets is up(wards) (According to Newton's third law) the forces (on the rod and steel core/magnets) are equal and opposite	B1 B1 B1	Allow: 'up and down' as equivalent to 'opposite’
	(d)		Resistance increases by a factor of 4 Current decreases by a factor of 4 The force decreases by a factor of 4 $\text { force }=0.004(\mathrm{~N})$	C1 C1 A1	Possible e.c.f. from (c)(i) Note: force = (c)(i)/4 can score full marks Special case: Allow 1 mark for (resistance doubles, current is halved, hence) force $=0.008(\mathrm{~N})$
			Total	9	

Question		Expected Answers	Marks	Additional guidance
(c)	(i)	$\begin{aligned} & \text { mass }=235 \times 1.7 \times 10^{-27}\left(=3.995 \times 10^{-25} \mathrm{~kg}\right) \\ & \text { volume }=\frac{4}{3} \pi \times\left(8.8 \times 10^{-15}\right)^{3}\left(=2.855 \times 10^{-42} \mathrm{~m}^{3}\right) \\ & \text { density }=\text { mass/volume } \\ & \text { density }=1.4 \times 10^{17}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	C1 C1 A1	Allow: $1.66 \times 10^{-27} \mathrm{~kg}$ for mass of nucleon Allow: $10^{17}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ for this estimation question Note: Omitting 235 gives $6.0 \times 10^{14}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$, allow 2 mark Allow: 1 mark if 92 or 143 is used to determine the mass of the nucleus; this gives a density value of $5.5 \times 10^{16}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ and $8.5 \times 10^{16}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ respectively
	(ii)	The nucleons / neutrons and protons are packed together with little or no empty space (AW)	B1	
		Total	14	

Question			Expected Answers	Marks	Additional guidance
7	(a)		The critical density is the density for which the universe will expand towards a (finite) limit or rate of expansion tends to zero / which will result in a flat universe	B1	Not: critical density is given by $\frac{3 H_{0}{ }^{2}}{8 \pi G}$
	(b)		$\begin{aligned} & \text { Hubble constant }=\frac{65 \times 10^{3}}{10^{6} \times 3.1 \times 10^{16}} \\ & \text { Hubble constant }=2.1 \times 10^{-18} \mathrm{~s}^{-1} \\ & \text { critical density }=\frac{3 H_{0}{ }^{2}}{8 \pi G} \\ & \text { critical density }=\frac{3 \times\left(2.1 \times 10^{-18}\right)^{2}}{8 \pi \times 6.67 \times 10^{-11}} \\ & \text { critical density }=7.9 \times 10^{-27}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	B1 C1 A1	Possible e.c.f. from value of Hubble constant within this calculation
	(c)	(i)	open: (density of universe < critical density hence) the universe will expand forever closed: (density of universe > critical density hence) the universe will (eventually stop expanding and then) contract / big crunch flat: (density of universe = critical density hence) the universe will expand towards a (finite) limit / rate of expansion tends to zero	B1 B1 B1	Allow: 'universe continues to expand' Not: ‘The universe stops expanding' Special case: Award 1 mark for correct sketches if no explanation is given for open, closed and flat
		(ii)	Any one from: Existence of dark matter / black holes / neutrinos / dark energy / H_{0} is not known accurately	B1	
			Total	8	

Question		Expected Answers	Marks	Additional guidance
9	(a)	Any three from 1 to 4: 1. A (piezoelectric) crystal / transducer is used to send pulse(s) of ultrasound (into the patient) 2. Wave / ultrasound / pulse / signal is reflected (at the boundary of tissue) 3. The (intensity of the) reflected signal depends on the acoustic impedances (at the boundary) 4. The (time of) delay is used to determine the depth / thickness \mathcal{P} QWC: Award a mark for correct sequencing of the steps in the process	$\mathrm{B} 1 \times 3$ B1	Must use ticks on Scoris to show where the marks are awarded Allow: $\frac{I_{(r)}}{I_{0}}=\frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}}$ without symbols defined for the $3^{\text {rd }}$ marking point Note: Do not allow marking points 2 or 3 for gel-skin interface
	(b)	A-scan is one directional / B-scan involves different directions or angles / B-scan consists of many A-scans / B-scan produces 2-D or 3-D image	B1	
		Total	5	

| Question | | Expected Answers | Marks | Additional guidance |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{1 0}$ | (a) | A neutron is absorbed by a (massive / uranium) nucleus
 The nucleus splits into two (smaller/daughter) nuclei and
 (one or more) neutrons | B1 | |
| (b) | In a fission reaction there is a decreases in the mass
 (According to $\Delta E=\Delta m^{2}$) mass is converted into energy
 Or
 The (total) binding energy of the products / smaller nuclei
 is greater than the binding energy of the original nucleus
 The difference in the binding energies is released as
 energy | M1 | A1 | Allow: The 'BE increases (in the reaction)' |
| (c) | Moderator: water / graphite / carbon
 It slows down the (fast-moving) neutrons / reduces the
 (kinetic) energy of neutrons
 Slow-moving neutrons have greater chance of causing
 fission (than fast-moving neutrons) | B1 | Allow: They become thermal neutrons | |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Physics A

Advanced GCE

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations available in Scoris

Annotation	Meaning
[1]0]	Benefit of doubt given
[[4]]	Contradiction
3	Incorrect response
[1¢ㅣ	Error carried forward
[-T	Follow through
[回	Not answered question
Per	Benefit of doubt not given
ITHT	Power of 10 error
\square	Omission mark
[:1]	Rounding error
Cr	Error in number of significant figures
\checkmark	Correct response
[-]	Arithmetic error
$?$	Wrong physics or equation

Annotations in detailed mark scheme

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf , then allow answers to 2 or more significant figures.
(Significant figures are rigorously assessed in the practical skills.)

Question			Answers		Marks	Guidance
1	(a)		electric field strength = force per unit (positive) charge		B1	Allow: force/charge Not: F/Q
	(b)	(i)	$\begin{aligned} & E=V / d \\ & 3.0 \times 10^{6}=V / 1.3 \times 10^{-3} \\ & V=3900(\mathrm{~V}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: This mark is for correct substitution Allow: 1 mark if answer is $3.9 \times 10^{\mathrm{n}}(\mathrm{V}), \mathrm{n} \neq 3-\mathrm{POT}$ error
		(ii)1	$\begin{aligned} & Q=I t \\ & Q=2.7 \times 10^{-9} \times 4.0 \times 10^{-2} \\ & \text { charge }=1.1 \times 10^{-10}(\mathrm{C}) \text { or } 1.08 \times 10^{-10}(\mathrm{C}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: This mark is for correct substitution
		(ii)2	$\begin{aligned} & \text { number }=1.08 \times 10^{-10} / 1.6 \times 10^{-19} \\ & \text { number }=6.8 \times 10^{8} \text { or } 6.75 \times 10^{8} \end{aligned}$		B1	Possible ecf from (b)(ii)1
		(iii)	$\begin{aligned} & \text { energy }=V Q \\ & \text { energy }=3900 \times 1.08 \times 10^{-10} \\ & \text { energy }=4.2 \times 10^{-7}(\mathrm{~J}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: No credit for using $1 / 2$ QV Possible ecf from (b)(ii)1
				Total	8	

Question			Answers	Marks	Guidance
2	(a)		torque $=$ one of the forces \times perpendicular distance (between the forces)	B1	
	(b)	(i)	Into (plane of) paper	B1	Not: 'down'
		(ii)1	$\begin{aligned} & \text { force }=\text { BIL }=0.060 \times 0.03 \times 0.015 \\ & \text { force }=2.7 \times 10^{-5}(\mathrm{~N}) \end{aligned}$	B1	
		(ii)2	$\begin{aligned} & \text { torque }=2.7 \times 10^{-5} \times 0.015 \\ & \text { torque }=4.1 \times 10^{-7}(\mathrm{~N} \mathrm{~m}) \text { or } 4.05 \times 10^{-7}(\mathrm{~N} \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (b)(ii)1 Do not allow $4.0 \times 10^{-7}(\mathrm{~N} \mathrm{~m})$ - rounding error
	(c)	(i)	$\begin{aligned} & F=B Q v \\ & 2.0 \times 10^{-13}=0.14 \times Q \times 4.5 \times 10^{6} \\ & \text { charge }=3.2 \times 10^{-19}(\mathrm{C}) \text { or } 3.17 \times 10^{-19}(\mathrm{C}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: Any subject
		(ii)	$\begin{aligned} & F=m v^{2} / r \\ & 2.0 \times 10^{-13}=\frac{2.7 \times 10^{-26} \times\left(4.5 \times 10^{6}\right)^{2}}{r} \\ & \text { radius }=2.7(\mathrm{~m}) \text { or } 2.73(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: Any subject
		(iii)	$B Q v=m v^{2} / r$ Hence, radius \propto mass	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: $r \propto m$
			Total	12	

Question			Answers	Marks	Guidance
3	(a)		magnetic flux $=$ (magnetic) flux density \times (cross-sectional) area Idea of (magnetic) field normal to the plane of the area	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow full credit for magnetic flux $=B A$, where $B=$ magnetic flux density normal to area and $A=$ (cross-sectional) area
(b)		(i)	constant rate of change of (magnetic) flux / flux density	B1	Not: 'graph has constant gradient’
		(ii)	$\begin{aligned} & \text { e.m.f. }=\text { rate of change of flux linkage } \\ & \text { e.m.f. }=\frac{1.4 \times 10^{-2} \times \pi \times\left(3.2 \times 10^{-2}\right)^{2} \times 180}{2.5} \\ & \text { e.m.f. }=3.2 \times 10^{-3}(\mathrm{~V}) \text { or } 3.24 \times 10^{-3}(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: $E=\frac{\Delta N \phi}{\Delta t}$ Deduct 1 mark if B is misread from the graph and then ecf Allow: 2 marks for an answer 3.24×10^{n} (if $n \neq-3$) Allow: 2 marks for 1.78×10^{-5} (when 180 has been missed out)
	(c)	(i)	$\begin{aligned} & P=V I \\ & \text { current in secondary }=15 / 6 \text { or } 2.5(\mathrm{~A}) \\ & \text { primary voltage }=6.0 \times \text { turn ratio }=6.0 \times 40=240(\mathrm{~V}) \\ & V_{\mathrm{p}}=240(\mathrm{~V}) \quad \text { or } \quad I_{\mathrm{s}}=2.5(\mathrm{~A}) \\ & \text { primary current }=2.5 / 40 \text { or } 15 / 240 \\ & \text { input current }=6.3 \times 10^{-2}(\mathrm{~A}) \text { or } 6.25 \times 10^{-2}(\mathrm{~A}) \end{aligned}$	C1 A1	The C1 mark is for either of these values
		(ii)	There is no change in flux density / (magnetic) flux / (magnetic) flux linkage	B1	Not: 'There is no change in the magnetic field'
			Total	9	

Question			Answers		Marks	Guidance
4	(a)		$\begin{aligned} & \text { capacitance = charge/p.d. } \\ & \text { or capacitance = charge per (unit) p.d. } \end{aligned}$		B1	Allow: voltage instead of p.d. Note: Do not allow mixture of quantity and unit, e.g. 'charge per (unit) volt'
	(b)	(i)	$\begin{aligned} & C_{\text {parallel }}=240(\mu \mathrm{~F}) \\ & C_{T}=(240 \times 120) /(240+120) \text { or } C_{T}=\left(240^{-1}+120^{-1}\right)^{-1} \\ & \text { total capacitance }=80(\mu \mathrm{~F}) \end{aligned}$		$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Allow :1 mark if C_{T} is not the subject, e.g: $\frac{1}{C_{T}}=\frac{1}{240}+\frac{1}{120}$
		(ii)	$\begin{aligned} & E=\frac{1}{2} V^{2} C \\ & E=\frac{1}{2} \times 6.0^{2} \times 80 \times 10^{-6} \\ & \text { energy }=1.4 \times 10^{-3}(\mathrm{~J}) \text { or } 1.44 \times 10^{-3}(\mathrm{~J}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf Allow: 1 mark for an answer $1.44 \times 10^{n}(n \neq-3)$
		(iii)1	$6.0 / e=2.2(\mathrm{~V})$ (as on graph) Or $6.0 \times 0.37=2.2(\mathrm{~V})$ (as on graph) Or At $20(\mathrm{~s}), V=2.2(\mathrm{~V}), 2.2 / 6.0=0.37\left(\right.$ or $\left.e^{-1}\right)$		B1	Allow: Graph reading within $\pm 0.2 \mathrm{~V}$
		(iii)2	$\begin{aligned} & C R=20 \\ & R=\frac{20}{80 \times 10^{-6}} \\ & R=2.5 \times 10^{5}(\Omega) \end{aligned}$		C1 A1	Allow: Follow through with CR value from (iii)1
				Total	8	

Question			Answers	Marks	Guidance
5	(a)		Same charge / number of protons	B1	Not: 'same chemical property'
	(b)		strong (nuclear force / interaction) gravitational (force)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: 'gravity’
	(c)	(i)	${ }_{7}^{15} \mathrm{~N}$	B1	
		(ii)	$(\mathrm{ud} \mathrm{d}) \rightarrow(\mathrm{u} \mathrm{u} \mathrm{d})$	B1	Allow: One down quark becomes up quark or $d \rightarrow u(+$ electron + antineutrino)
	(d)	(i)	$\begin{aligned} & 0.16 \mathrm{MeV}=0.16 \times 10^{6} \times 1.6 \times 10^{-19} \\ & \frac{1}{2} \times 9.11 \times 10^{-31} \times v^{2}=2.56 \times 10^{-14} \\ & \text { speed }=2.4 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { or } 2.37 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Allow: 1 mark for using 9.8 MeV ; answer is equal to $1.86 \times 10^{9}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		(ii)	The mass of the electron increases / greater than 'rest mass'	B1	
	(e)	(i)	$\begin{aligned} & \lambda=0.693 / T \\ & \lambda=0.693 /\left(5560 \times 3.16 \times 10^{7}\right) \\ & \lambda=3.9 \times 10^{-12}\left(\mathrm{~s}^{-1}\right) \text { or } 3.94 \times 10^{-12}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 1 mark for 1.25×10^{-4} (if 5560 y used)
		(ii)	$\begin{aligned} & \text { number }=\frac{1.0 \times 10^{-3}}{14} \times 6.02 \times 10^{23} \\ & \text { number }=4.3 \times 10^{19} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	Note: This step must be seen to score 1 mark
		(iii)	$\begin{aligned} & \text { activity }=\lambda N \\ & \text { activity }=3.94 \times 10^{-12} \times 4.3 \times 10^{19} \\ & \text { activity }=1.7 \times 10^{8}(\mathrm{~Bq}) \text { or } 1.69 \times 10^{8}(\mathrm{~Bq}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (e)(i) and (e)(ii)

Question		Answers	Marks	Guidance
(f)	Any three from: 1. Plants / living things take in carbon(-dioxide) or plants / living things stop taking in carbon after death	B1×3	2.The ratio of carbon-14 to carbon-12 (nuclei) for the relic sam- ple is determined marks are awarded 3. The current ratio of carbon-14 to carbon-12 nuclei is deter- mined 4. The age of the relic is found using ' $x=x_{0} e^{-\lambda t,}$ Limitation: The ratio of carbon-14 to carbon-12 is assumed to be constant / count(-rate) from relic may be comparable to background count(-rate)	B1

| Question | | Answers | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6}$ | (a) | | (Minimum) energy to separate
 (all) nucleons / protons and neutrons (of a nucleus) | |
| | (b) | (i) | M1
 A1
 or BE of ${ }^{2} \mathrm{H}=2 \times 1.8 \times 10^{-13}(\mathrm{~J})$
 energy $=\left(4 \times 1.1 \times 10^{-12}\right)-2 \times\left(2 \times 1.8 \times 10^{-13}\right)$
 energy $=3.68 \times 10^{-12}(\mathrm{~J}) / 3.7 \times 10^{-12}(\mathrm{~J})$ | Alternative:
 B.E. $=$ mass defect $\times c^{2}$
 mass defect $=$ mass of nucleons - mass of nucleus
 A1 |

Question			Answers	Marks	Guidance
7	(a)		Any two from: 1. Electrons are accelerated through high voltage 2. (High speed) electron(s) hit metal 3. kinetic energy of electron(s) 'produces' X-ray (photons)	B1×2	Allow: X-rays are produced by (large) deceleration of electrons
\square	(b)	(i)	Packet /quantum of (electromagnetic) energy	B1	Allow: 'particle of (electromagnetic) energy'
		(ii)	$E=h c / \lambda$ and X-rays have shorter wavelength Or $E=h f$ and X-rays have higher frequency	B1	
	(c)		$\begin{aligned} & \text { (KE of electron }=\text {) } 1.6 \times 10^{-19} \times 120 \times 10^{3} \\ & e V=\frac{h c}{\lambda} \\ & 1.6 \times 10^{-19} \times 120 \times 10^{3}=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda} \\ & \text { wavelength }=1.0 \times 10^{-11}(\mathrm{~m}) \text { or } 1.04 \times 10^{-11}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow: 2 marks for $1.0(4) \times 10^{-n}(m)(n \neq 11$ - powers of ten error) Allow: $1 \times 10^{-11}(\mathrm{~m})$
	(d)		Compton (scattering) Incoming photon collides with an electron, the electron is ejected and the photon is scattered / has lower energy Or Pair production Incoming photon (disappears and) produces electron-positron pair	M1 A1 \qquad M1 A1	Must use ticks on Scoris to show where the marks are awarded Allow: (Simple) scatter(ing) The photon is absorbed and re-emitted without change in energy/wavelength/frequency A1
			Total	9	

Question			Answers	Marks	Guidance
8	(a)		No entry into body / no cutting/incision of patient / no surgery Lower risk of infection / less trauma	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	(b)		Radioactive substance that is ingested / injected (into patient) Technetium(-99m) / lodine(-131) / fluorine(-18)	B1 B1	Not: barium
	(c)		Collimator - gamma (ray photons) travel along the axis of lead tubes or allows parallel gamma (ray photons travel to the scintillator) Having thin / long / narrow (lead) tubes makes the image sharper / less blurred (QWC mark) Scintillator - gamma ray photon produces many/thousands of photons of (visible) light Photomultiplier - An electrical pulse is / electrons are produced from the light (photons) Computer - Signals (from photomultiplier tubes) are used to produce an image	B1 B1 B1 B1 B1	Must use ticks on Scoris to show where the marks are awarded
	(d)	(i)	$\begin{aligned} & v=f \lambda \\ & 1500=2.0 \times 10^{6} \times \lambda \\ & \text { wavelength }=7.5 \times 10^{-4}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		(ii)	Ultrasound is reflected by (moving) blood (cells) The frequency / wavelength (of ultrasound) is changed (AW) The change of frequency is related to speed of blood / change of wavelength is related to speed of blood / ' Δ frequency \propto speed of blood'	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Must use ticks on Scoris to show where the marks are awarded Not: Doppler effect mentioned
			Total	14	

Question			Answers	Marks	Guidance
9	(a)		Any four from: 1. (Sun / star formed from) dust cloud /nebula / (hydrogen) gas 2. Gravitational collapse (AW) 3. Temperature of (dust) cloud increases / KE (of cloud) increases / (cloud) heats up 4. Fusion occurs (when temperature is about $10^{7} \mathrm{~K}$) 5. Protons / hydrogen nuclei combine to make helium (nuclei) 6. Stable size star is produced when thermal / radiation pressure is equal to gravitational pressure Steps sequenced correctly - QWC mark	$\mathrm{B} 1 \times 4$ B1	Must use ticks on Scoris to show where the marks are awarded
	(b)		Any two from: 1. Very dense star 2. Hot star / high surface temperature / low luminosity 3. No fusion reactions take place / leaks away photons (from earlier fusion reactions) 4. Its collapse is prevented by Fermi pressure / mass less than 1.4 solar masses (AW)	B1×2	Must use ticks on Scoris to show where the marks are awarded Not: small in size, but allow 'smaller than main sequence star / Sun'
	(c)	(i)	Flat or universe will expand towards a (finite) limit or the rate of expansion will become/tend to zero	B1	
		(ii)	$\begin{aligned} & \text { Hubble constant }=1 / \text { age } \\ & H_{0}=1 / 4.4 \times 10^{17}\left(=2.273 \times 10^{-18} \mathrm{~s}^{-1}\right) \\ & \text { density }=\frac{3 \mathrm{H}_{0}{ }^{2}}{8 \pi \mathrm{G}} \\ & \text { density }=\frac{3 H_{0}{ }^{2}}{8 \pi G}=\frac{3 \times\left(2.273 \times 10^{-18}\right)^{2}}{8 \pi \times 6.67 \times 10^{-11}} \\ & \text { density }=9.2 \times 10^{-27}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \text { or } 9.24 \times 10^{-27}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \\ & \text { density is about } 10^{-26}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	C1 C1 A1 AO	Allow: 2 marks for a bald $9.24 \times 10^{-27}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ answer Note: This mark can only be scored if working is shown

Question		Answers		Marks	Guidance
	(iii)	$\begin{aligned} & \text { number }=9.24 \times 10^{-27} / 1.7 \times 10^{-27} \\ & \text { number }=5.4 \quad \text { (Allow } 5) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (c)(ii) Allow: 2 marks for ' $10^{-26} / 1.7 \times 10^{-27}=5.9$ or 6 '
(d)		$\begin{aligned} & \frac{1}{2} m v^{2}=\frac{3}{2} k T \quad / \quad \text { speed } \propto \sqrt{T} \\ & \text { ratio }=\sqrt{\frac{10^{8}}{2.7}} \\ & \text { ratio }=6.1 \times 10^{3} \text { or } 6.09 \times 10^{3} \end{aligned}$		C1 A1	
			Total	15	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

Physics A

Advanced GCE

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation Available in Scoris	Meaning
[Tir]	Benefit of doubt given
[CO\%	Contradiction
3	Incorrect response
[-5	Error carried forward
\square	Follow through
[104]	Not answered question
-	Benefit of doubt not given
Liv	Power of 10 error
-	Omission mark
[19	Rounding error or 'reading error'
$\Gamma 17$	Error in number of significant figures
\checkmark	Correct response
\square	Arithmetic error
2	Wrong physics or equation

Annotation Used in Mark Scheme	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: Q2(d), Q6(b), Q7(d), Q8(a)(b), Q9(a)(b), Q10(c).

Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.

Question			Answer		Marks	Guidance
1	(a)		(farad = 1) coulomb per (unit) volt		B1	Allow: $\mathrm{C} \mathrm{V}^{-1}$
-	(b)	(i)	1/C		B1	Allow: 'inverse of C'
		(ii)	work (done) / energy		B1	
	(c)		Diagram: All 3 capacitors connected in series $\begin{aligned} & \frac{1}{C}=\frac{1}{100}+\frac{1}{200}+\frac{1}{500} / \frac{1}{C}=1.7 \times 10^{-2} \\ & \text { capacitance }=59(\mu \mathrm{~F}) \end{aligned}$		B1 C1 A1	Note: Correct symbol must be used for capacitor and at least one of the capacitance values (without the unit) must be shown Allow: Answer to 1 sf Note: Answer to 3sf is $58.8(\mu \mathrm{~F})$ Allow: $1.7 \times 10^{-2}(\mu \mathrm{~F})$ scores 1 mark from the C1A1
	(d)	(i)	$\begin{aligned} & Q=0.040 \times 60 \\ & \text { charge }=2.4(C) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 1 mark for $2.4 \times 10^{\mathrm{n}}, \mathrm{n} \neq 0$ (POT error)
		(ii)	$\begin{aligned} & \text { energy }=\frac{1}{2} \times \frac{2.4^{2}}{0.10} \\ & \text { energy }=29(\mathrm{~J}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (d)(i) Note: Answer to 3 sf is 28.8 (J) Allow full credit for correct use of $1 / 2 V Q$ or $1 / 2 V^{2} C$; the final p.d is $24(\mathrm{~V})$
				Total	10	

Question			Answer	Marks	Guidance
2	(a)	(i)	Correct direction of force at A (and marked F)	B1	
		(ii)	The force is perpendicular to velocity / motion (hence no work done on the electron) or No (component of) acceleration / force in direction of velocity / motion (hence no work done on electron) or No distance moved in the direction of the force	B1	
	(b)		$\begin{aligned} & F=\frac{m v^{2}}{r} \\ & \text { force }=\frac{9.11 \times 10^{-31} \times\left(6.0 \times 10^{7}\right)^{2}}{0.24} \\ & \text { force }=1.4 \times 10^{-14}(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Answer to 3 sf is $1.37 \times 10^{-14}(\mathrm{~N})$ Allow: 1 mark for $1.4 \times 10^{\mathrm{n}} ; \mathrm{n}=-14$ (POT error)
	(c)		$\begin{aligned} & F=B Q v \\ & 1.37 \times 10^{-14}=B \times 1.60 \times 10^{-19} \times 6.0 \times 10^{7} \\ & B=1.4 \times 10^{-3}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (b) Note: Answer to 3 sf is $1.43 \times 10^{-3}(\mathrm{~T})$ for $1.37 \times 10^{-14}(\mathrm{~N})$ Note: Using $1.4 \times 10^{-14}(\mathrm{~N})$ gives $1.46 \times 10^{-3}(\mathrm{~T})$ Note: Using $B=m v /$ Qr gives $1.42 \times 10^{-3}(\mathrm{~T})$
	(d)		Using $(E=) m c^{2}$ and $(E=) \frac{h c}{\lambda} \quad$ (QWC) $2 \times m c^{2}=2 \times \frac{h c}{\lambda} \quad$ or $\quad m c^{2}=\frac{h c}{\lambda} \quad$ or $m c=\frac{h}{\lambda}$ Correct substitution (any subject) $\lambda=2.4 \times 10^{-12}(\mathrm{~m})$	B1 C1 A1	Eg: $2 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2}=2 \times \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda}$ Answer to 3 sf is $2.43 \times 10^{-12}(\mathrm{~m})$ Allow: 1 mark for $1.21 \times 10^{-12}(\mathrm{~m})$ or $4.86 \times 10^{-12}(\mathrm{~m})$ for the C1A1 marks
			Total	9	

Question			Answer	Marks	Guidance
3	(a)	(i)	$f=\frac{1}{T}=\frac{1}{10 \times 10^{-3}}$ frequency $=100(\mathrm{~Hz})$	B1	
		(ii)	$\begin{aligned} & 2.0 \times 10^{-2}=B \times 1.6 \times 10^{-3} \times 400 \\ & B=\frac{2.0 \times 10^{-2}}{1.6 \times 10^{-3} \times 400} \\ & B=3.1 \times 10^{-2}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 2 mark for $3.1 \times 10^{n} ; n \neq-2$ (POT error) Answer to 3 sf is $3.13 \times 10^{-2}(\mathrm{~T})$ Special case: 12.5 scores 1 mark; number of turns omitted
		(iii)	(e.m.f. =-) rate of change of flux linkage Tangent drawn on Fig. 3.1 at 2.5 (ms) or 7.5 (ms) or 12.5 (ms) Values substituted to determine the gradient. The gradient must be 12.5 ± 1.0 (V)	B1 B1 B1	Allow: $E=(-) \frac{\Delta(N \phi)}{\Delta t}$ or (e.m.f. =) gradient Alternative: $\begin{array}{ll}\text { maximum e.m.f. }=2 \pi f \times \text { maximum flux linkage } & \mathrm{C} 1 \\ \text { maximum e.m.f. }=2 \pi \times 100 \times 2 \times 10^{-2} & \mathrm{C} 1 \\ \text { maximum e.m.f. }=12.6(\mathrm{~V}) \text { or } 4 \pi(\mathrm{~V}) & \text { A1 }\end{array}$
	(b)		$\begin{aligned} & P=\frac{V^{2}}{R} \\ & P=\frac{12^{2}}{150} \\ & \text { power }=0.96(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (a)(iii)
			Total	9	

Question		Answer	Marks	Guidance
4	(a)	Any two from: 1. There is a repulsive (electrical) force (between the gold nucleus and the alpha particle) 2. Momentum is conserved (because there are no external forces) / initial momentum of alpha particle $=$ final momentum of gold nucleus (because there are no external forces) 3. KE of alpha particle transformed into (electrical) PE	B1×2	Allow: (The gold nucleus and alpha particle experience) forces in opposite directions
	(b)	Correct directions of field shown on lines from \mathbf{A} and \mathbf{B} Correct curved field lines from \mathbf{A} and \mathbf{B}	B1 B1	
	(c)	$\begin{aligned} & F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & Q=79 e \text { and } q=2 e \\ & \text { force }=\frac{79 \times 2 \times\left(1.60 \times 10^{-19}\right)^{2}}{4 \pi \times 8.85 \times 10^{-12} \times\left(6.0 \times 10^{-14}\right)^{2}} \\ & \text { force }=10.1(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	All values must be substituted for this mark
	(d)	Correctly shaped curve with F decreasing as r increases Value of F is between 2 to $3(\mathrm{~N})$ at $r=12 \times 10^{-14} \mathrm{~m}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Note: $F \propto 1 / r^{2}$, hence F should be about 2.5 (N)
		Total	9	

Question			Answer	Marks	Guidance
5	(a)		no: of neutrons = 142	B1	
- (b)		(i)	$\begin{aligned} & (5.6 \mathrm{MeV}=) 5.6 \times 10^{6} \times 1.6 \times 10^{-19} \\ & \text { energy }=8.96 \times 10^{-13}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A0 } \end{aligned}$	Allow: $5.6 \times 1.6 \times 10^{-13}$
		(ii)	$\begin{aligned} & \frac{1}{2} \times 6.65 \times 10^{-27} \times v^{2}=8.96 \times 10^{-13} \\ & v=\sqrt{\frac{2 \times 8.96 \times 10^{-13}}{6.65 \times 10^{-27}}} \\ & \text { speed }=1.6 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Answer to 3 sf is $1.64 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Note: The answer is $1.65 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ if $9 \times 10^{-13}(\mathrm{~J})$ is used
	(c)	(i)	$\begin{aligned} & \text { activity }=\frac{62}{8.96 \times 10^{-13}} \\ & \text { activity }=6.92 \times 10^{13}(\mathrm{~Bq}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	Allow: activity $=\frac{62}{9 \times 10^{-13}}\left(=6.89 \times 10^{13} \mathrm{~Bq}\right)$ Possible ecf from (b)(i)
		(ii)	$\begin{aligned} & \lambda=\frac{0.693}{T} \\ & \lambda=\frac{0.693}{88 \times 3.16 \times 10^{7}} \\ & \text { decay constant }=2.49 \times 10^{-10}\left(\mathrm{~s}^{-1}\right) \text { or } 2.5 \times 10^{-10}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: $\ln 2=0.693$ Allow: 1 mark for using 88 years and getting an answer of 7.9×10^{-3}
		(iii)	$\begin{aligned} & 1 A=\lambda N \\ & N=\frac{6.92 \times 10^{13}}{2.49 \times 10^{-10}} \\ & \text { number }=2.78 \times 10^{23} \text { or } 2.8 \times 10^{23} \\ & 2 \text { mass }=\frac{2.78 \times 10^{23}}{6.02 \times 10^{23}} \times 0.24 \\ & \text { mass }=0.11(\mathrm{~kg}) \end{aligned}$	C1 A1 B1	Possible ecf from (c)(ii) Note: ${ }^{‘} 7 \times 10^{13} / 2.5 \times 10^{-10}=2.8 \times 10^{23,}$ Possible ecf for mass from incorrect value for number of nuclei
			Total	10	

Question			Answer	Marks	Guidance
7	(a)		Any two from: (X-rays) are EM waves Travel at speed of light / $3 \times 10^{8} \mathrm{~ms}^{-1}$ (in a vacuum) Travel in a vacuum / empty space Transverse waves Can cause ionisation Have wavelength of about $10^{-10} \mathrm{~m}$ (X-rays are high energy) photons (AW)	B1×2	Allow: reference to diffraction / interference / refraction / reflection / polarisation for 1 mark
	(b)		(X-ray) photon interacts with an (orbital) electron The (scattered) photon has a longer wavelength / lower frequency / lower energy AND The electron is ejected (from the atom at high speed)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: 'X-rays' instead of 'photons' for the second B1 mark
	(c)	(i)	Initial / original / incident intensity	B1	Allow: Initial / original / incident power per (unit) area
		(ii)	$\begin{aligned} & 0.5=\mathrm{e}^{-(3.3 x)} \\ & \ln (0.5)=-3.3 x \\ & x=\ln (0.5) /(-3.3) \\ & x=0.21(\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: $\ln (2)=3.3 x$ Allow: 2 marks for $2.1 \times 10^{n} ; \mathrm{n} \neq-1$ (POT error)
	(d)		A contrast material has large attenuation coefficient / large atomic number / large Z (and hence easily absorbs X-rays) Idea of revealing tissue	B1 B1	
			Total	10	

Question		Answer	Marks	Guidance
8	(a)	Any seven from: 1. Protons / nuclei have spin / behave like (tiny) magnets 2. Protons / nuclei precess about the magnetic field (provided by the strong electromagnet) 3. Transmitting coils provide (pulses of) radio waves of frequency equal to the Larmor frequency 4. The protons / nuclei absorb energy / radio waves / resonate and flip into a higher energy state 5. When protons / nuclei flip back to a lower energy state they emit (photons of) radio waves 6. The relaxation time (of the protons/nuclei) depends on the (surrounding) tissues 7. The radio waves are picked up by the receiving coils 8. The gradient coils alter the magnetic flux density (through the body) 9. The Larmor frequency (of the protons / nuclei) varies through the body 10. The computer (processes all the signals from the receiving coils and) generates the image(s)	B1 $\times 7$	Show annotation on Scoris Not: Atoms / particles for nuclei /protons. Allow: The protons / nuclei absorb energy / radio waves / resonate and get excited Allow: When protons / nuclei relax they emit (photons of) radio waves
	(b)	Ay two from: 1. PET scan: uses radioactive substance / uses positronemitting substance / uses $F(-18)$ / mention of gamma rays / mention of gamma photons 2. PET scan reveal the 'function' of the brain (AW) 3. MRI scan show variation in tissues (in the brain) (AW)	B1×2	Allow: MRI scan: no radioactive substance is required / mention of radio waves Allow: PET scans are used to diagnose dyslexia / Alzheimer (disease)
		Total	9	

Question		Answer	Marks	Guidance
9	(a)	Any four from: 1. (Fusion is the) joining / fusing together of ('lighter') nuclei / protons (to make 'heavier' nuclei) 2. Mass decreases in the reaction and this is transformed into energy OR the products have greater binding energy 3. High temperatures $/ \sim 10^{7} \mathrm{~K}$ needed for fusion 4. High pressure / density (required in the core) 5. The protons / nuclei repel (each other because of their positive charge) 6. The strong (nuclear) force comes into play when the protons / nuclei are close to each other	B1×4	Not: Atoms / particles for nuclei /protons.
	(b)	(When hydrogen / helium runs out) the outer layers of the star expands / a (super) red giant is formed The core (of the star) collapses (rapidly) / a supernova is formed (Depending on the initial mass of the star the remnant is either a) neutron star or a black hole	B1 B1 B1	
		Total	7	

Question			Answer	Marks	Guidance
10	(a)		$\begin{aligned} & F=\frac{G M m}{r^{2}} \\ & \text { force }=\frac{6.67 \times 10^{-11} \times\left(10^{41}\right)^{2}}{\left(4 \times 100^{22}\right)^{2}} \\ & \text { force }=4.2 \times 10^{26}(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: $4 \times 10^{26}(\mathrm{~N})$ or 10^{26} since this is an estimation Allow: 2 marks for $4.2 \times 10^{n} ; n \neq 26$ (POT error)
	(b)		Allow any one from: - The galaxies are receding / moving away from each other (because of the big bang) - Other galaxies may be pulling them in opposite direction - The acceleration is too small to collapse (other than over a very long period of time)	B1	
	(c)		Any six from: 1. (At the start it was) very hot / extremely dense / singularity 2. All forces were unified 3. Expansion led to cooling 4. Quarks / leptons (soup) 5. More matter than antimatter 6. Quarks combine to form hadrons / protons / neutrons 7. Imbalance of neutrons and protons / (primordial) helium produced 8. Atoms formed 9. Idea of gravitational force responsible for formation of stars / galaxies 10. Temperature becomes $2.7 \mathrm{~K} / 3 \mathrm{~K}$ or (the universe is saturated with cosmic) microwave background radiation	B1×6	Show annotation on Scoris
	(d)	(i)	Dark lines / bands against a background of continuous spectrum	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	

Question	Answer	Marks	Guidance
(ii)	$\begin{aligned} & \frac{v}{c}=\frac{\Delta \lambda}{\lambda} \\ & \text { speed }=\frac{86.6}{393.4} \times 3.0 \times 10^{8} \quad(\text { Any subject }) \\ & \text { speed }=6.6 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { or } 66000\left(\mathrm{~km} \mathrm{~s}^{-1}\right) \\ & v=H_{0} d \\ & 66000=50 \times d \\ & \text { distance }=1300(\mathrm{Mpc}) \end{aligned}$	C1 C1 A1	Allow: 1 mark for $\frac{86.6}{480.0} \times 3.0 \times 10^{8}=5.41 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow: 2 marks for $1.3 \times 10^{\mathrm{n}} ; \mathrm{n} \neq 3$ (POT error) Note: Answer is $1080(\mathrm{Mpc})$ if $5.4 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ is used; this value will score 2 marks
	Total	15	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

Physics A

Advanced GCE

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels,Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

The following annotations are available on the marking scheme:
/ = alternative and acceptable answers for the same marking point
(1) $\quad=\quad$ separates marking points
allow $=$ answers that can be accepted
not $=$ answers which are not worthy of credit
reject $=$ answers which are not worthy of credit
ignore $=$ statements which are irrelevant
() = words which are not essential to gain credit
$=$ underlined words must be present in answer to score a mark
ecf = error carried forward
AW = alternative wording
ora $=$ or reverse argument
The following annotations are available in SCORIS.

Annotation	Meaning
\checkmark	correct response
3	incorrect response
[12	arithmetic error
[JT0	benefit of the doubt (where professional judgement has been used)
是	benefit of the doubt not given
[1+5	error carried forward
$\boldsymbol{\sim}$	information omitted
स-1\%	contradiction (in cases where candidates contradict themselves in the same response)

Annotation	Meaning
[:1]	rounding error
¢18	error in the number of significant figures
Prim	error in the power of 10 in a calculation
2	wrong physics or equation
[P]	not answered question
FI	follow through

Highlighting is also available to highlight any particular points on the script.

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: Q5(e), 6(d), 7(a), 8(a) and Q9(a)

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures and rounding errors:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.
Penalise a rounding error once only in the entire paper.

Question			Answer	Marks	Guidance
1	(a)	(i)	Any two from: Correct direction of movement of electrons Electrons deposited on $\mathbf{Y} /$ removed from \mathbf{X} An equal number of electrons removed and deposited on plates (AW)	B1 $\times 2$	
		(ii)1	$\begin{aligned} & Q=40 \times 10^{-6} \times 100\left(=4.0 \times 10^{-3} \mathrm{C}\right) \\ & 4.0 \times 10^{-3}=1.6 \times C \\ & C=2.5 \times 10^{-3}(\mathrm{~F}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 2 marks for $2.5 \times 10^{n}(F)$, where $n \neq-3$ (POT error)
		(ii)2	Graph starts at origin and has positive gradient A straight line graph that passes between 1-2 V at 100 s	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(b)	(i)	$\begin{aligned} & C R=4.7 \times 10^{-6} \times 220\left(=1.03 \times 10^{-3} \mathrm{~s}\right) \\ & 4.00=6.00 e^{-\frac{t}{1.03 \times 10^{-3}}} \\ & t=-\ln (4.00 / 6.00) \times 1.03 \times 10^{-3} \\ & \text { time }=4.2 \times 10^{-4}(\mathrm{~s}) \end{aligned}$	C1 C1 A1	Note: Answer to 3 sf is 4.19×10^{-4} (s) Allow: 2 marks for $t=-\lg (4.00 / 6.00) \times 1.03 \times 10^{-3}=1.8 \times 10^{-4} \mathrm{~s}$
		(ii)	$\begin{aligned} & \text { speed }=\frac{0.100}{4.2 \times 10^{-4}} \\ & \text { speed }=240\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	B1	Possible ecf from (b)(i)
			Total	11	

Question			Answer	Marks	Guidance
2	(a)		force per unit (positive) charge	B1	Allow: $E=\frac{F}{Q}$, where $F=$ force on (a positive) charge Q
-	(b)	(i)	The direction is different (AW)	B1	
		(ii)	$E \propto 1 / r^{2}$ or distance is doubled $\therefore E$ decreases by a factor of 4 electric field strength $=2.0 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$	$\mathrm{C} 1$ A1	Not: $E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$ on its own Allow 1 sf answer
	(c)	(i)	$\begin{aligned} & F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & F_{\mathrm{E}}=\frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{4 \pi \varepsilon_{0} \times\left(5.0 \times 10^{-11}\right)^{2}} \\ & F_{\mathrm{E}}=9.2 \times 10^{-8}(\mathrm{~N}) \end{aligned}$	C1 C1 A1	Allow: 1 mark if $Q=q=1$ giving an answer of $3.6 \times 10^{30}(\mathrm{~N})$
		(ii)	$\begin{aligned} & F_{\mathrm{G}}=\frac{6.67 \times 10^{-11} \times 1.67 \times 10^{-27} \times 9.11 \times 10^{-31}}{\left(5.0 \times 10^{-11}\right)^{2}} \\ & F_{\mathrm{G}}=4.06 \times 10^{-47}(\mathrm{~N}) \\ & \text { ratio }=9.2 \times 10^{-8} / 4.06 \times 10^{-47} \\ & \text { ratio }=2.3 \times 10^{39} \end{aligned}$	C1 A1	Note: Deduct 1 mark if mass of two electrons or two protons is used, then ecf Possible ecf from (c)(i)
		(iii)1	$\begin{aligned} & \text { wavelength }=2.0 \times 10^{-10}(\mathrm{~m}) \\ & \lambda=h / \mathrm{mv} \\ & p=\frac{6.63 \times 10^{-34}}{2.0 \times 10^{-10}} \\ & p=3.3 \times 10^{-24}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	Possible ecf for incorrect wavelength Note: Answer to 3 sf is $3.32 \times 10^{-24}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow: 1 sf answer

Question	Answer	Marks	Guidance
(iii)2	$\begin{aligned} & v=\frac{3.32 \times 10^{-24}}{9.11 \times 10^{-31}}\left(=3.64 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & E_{\mathrm{k}}=1 / 2 \times 9.11 \times 10^{-31} \times\left(3.64 \times 10^{6}\right)^{2} \\ & E_{\mathrm{k}}=6.0 \times 10^{-18}(\mathrm{~J}) \end{aligned}$ or $E_{\mathrm{k}}=1 / 2 p^{2} / m$ $E_{k}=1 / 2 \times\left(3.32 \times 10^{-24}\right)^{2} / 9.11 \times 10^{-31}$ $E_{\mathrm{k}}=6.0 \times 10^{-18}(\mathrm{~J})$	C1 C1 A1 C1 C1 A1	Possible ecf from (iii)1 Note: Deduct 1 mark if mass of proton is used, then ecf Note: Answer to 3 sf is $6.05 \times 10^{-18}(\mathrm{~J})$ Allow: 1 sf answer Note: Deduct 1 mark if mass of proton is used, then ecf
	Total	15	

Question			Answer	Marks	Guidance
3	(a)		(Fleming's) left-hand rule	B1	
	(b)		The force is at right angles to the velocity (hence no work is done on the ions) / no (component of) force in the direction of motion / no (component of) acceleration in the direction of motion (AW)	B1	Allow: 'force is right angles to the motion'
	(c)	(i)	$\begin{aligned} & F=\frac{m v^{2}}{r} \\ & \text { force }=\frac{1.2 \times 10^{-26} \times\left(4.0 \times 10^{5}\right)^{2}}{0.15} \\ & \text { force }=1.3 \times 10^{-14}(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Answer to 3 sf is $1.28 \times 10^{-14}(\mathrm{~N})$
		(ii)	$\begin{aligned} & F=B Q v \\ & 1.28 \times 10^{-14}=B \times 1.6 \times 10^{-19} \times 4.0 \times 10^{5} \\ & B=0.20(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (c)(i) Allow: 1 sf answer of 0.2 (T)
		(iii)	$\begin{aligned} & \text { number per second }=\frac{4.8 \times 10^{-9}}{1.6 \times 10^{-19}} \\ & \text { number per second }=3.0 \times 10^{10}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 1 sf answer of $3 \times 10^{10}\left(\mathrm{~s}^{-1}\right)$
	(d)		(height is smaller) hence less abundance (than lithium-7) position suggests that the ions are less massive / lighter fewer neutrons (than lithium-7)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: fewer / less (than lithium-7)
			Total	10	

Question			Answer	Marks	Guidance
4	(a)	(i)	momentum / mass-energy / charge / proton number / baryon number / nucleon number	B1	Not: 'energy' on its own
		(ii)	Some basic labelling of neutron(s), Xe and Sr Correct extension of diagram showing at least one of the neutrons interacting with U-235 nucleus and producing neutron(s) and 'fragments'	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	(b)	(i)	initial $m=6.686 \times 10^{-27}(\mathrm{~kg})$ or final $m=6.681 \times 10^{-27}(\mathrm{~kg})$ or $\Delta m=0.005 \times 10^{-27}(\mathrm{~kg})$ $\begin{aligned} & \Delta \mathrm{E}=0.005 \times 10^{-27} \times\left(3.0 \times 10^{8}\right)^{2} \\ & \text { energy }=4.5 \times 10^{-13}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		(ii)	kinetic (energy)	B1	Not: heat / sound Allow: (gamma) photons / EM radiation
		(iii)	$\begin{aligned} & \text { KE }=\frac{3}{2} k T \\ & \text { KE }=\frac{3}{2} \times 1.38 \times 10^{-23} \times 10^{9} \\ & \text { KE }=2.1 \times 10^{-14}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: 1 sf answer or $10^{-14}(\mathrm{~J})$ because the temperature is given as $10^{9} \mathrm{~K}$
		(iv)	Some nuclei will have KE greater than the mean KE (and hence cause fusion) (AW)	B1	
			Total	10	

Question		Answer	Marks	Guidance
5	(a)	$\begin{aligned} & \lambda=\frac{0.693}{6.6 \times 10^{3}} \text { or } \lambda=\frac{\ln 2}{6.6 \times 10^{3}} \\ & \text { decay constant }=1.1 \times 10^{-4}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: Answer to 3sf is $1.05 \times 10^{-4}\left(\mathrm{~s}^{-1}\right)$
	(b)	$\begin{aligned} & A=\lambda N \\ & N=\frac{250 \times 10^{6}}{1.05 \times 10^{-4}} \\ & \text { number }=2.38 \times 10^{12} \text { or } 2.4 \times 10^{12} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A0 } \end{aligned}$	Possible ecf from (a) Allow full credit for bald 2.4×10^{12}
	(c)	$\begin{aligned} & \text { mass of F-18 }=\frac{2.38 \times 10^{12}}{6.02 \times 10^{23}} \times 0.018 \quad\left(=7.116 \times 10^{-14} \mathrm{~kg}\right) \\ & \text { mass of FDG }=7.116 \times 10^{-14} / 0.099 \\ & \text { mass of FDG }=7.2 \times 10^{-13}(\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (b) Allow full credit for using 2×10^{12}; answer is $6.04 \times 10^{-13}(\mathrm{~kg})$
	(d)	$\begin{aligned} & A=250 \times e^{-\left(1.05 \times 10^{-4} \times 20 \times 60\right)} \\ & \text { activity }=220(\mathrm{MBq}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Possible ecf from (a) Allow: 1 mark for 249 (MBq); factor of 60 omitted
	(e)	(FDG/positron-emitting substance is injected into the patient) Any three from: 1. Annihilation of electron and positron 2. Positron-electron annihilation produces two gamma photons 3. The gamma photons travels in opposite directions 4. The patient is surrounded by (a ring of) gamma detectors 5. A 3-D image is created (using the detector-signals with the aid of computer software) QWC: The arrival times / delay times of the photons (at diametrically opposite detectors) are used to pinpoint areas of increased activity (AW)	$\mathrm{B} 1 \times 3$ B1	Allow: rays / waves instead of photons in 2 and 3
		Total	12	

Question			Answer	Marks	Guidance
6	(a)		(Fast-moving) electrons hit a metal / an anode The kinetic energy of the electrons is transferred into Xrays / photons / EM waves	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: (X-rays are produced by large) deceleration of electrons
	(b)		An X-ray photon interacts an electron (within the atom) The electron is ejected and the energy / frequency of the (scattered) photon is reduced	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: The electron is ejected and the wavelength of the (scattered) photon is increased
	(c)	(i)	$\begin{aligned} & I=I_{0} e^{-\mu x} \\ & \mathrm{I}=3.0 \times 10^{9} \times \mathrm{e}^{-(6.5 \times 1.7)} \\ & \text { intensity }=4.8 \times 10^{4}\left(\mathrm{~W} \mathrm{~m}^{-2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	
		(i)	power of beam $=4.8 \times 10^{4} \times 5.0 \times 10^{-6}(=0.24 \mathrm{~W})$ power absorbed by tumour $=0.24 / 10=0.024(\mathrm{~W})$ $\begin{aligned} & \text { time }=200 / 0.024 \\ & \text { time }=8.3 \times 10^{3}(\mathrm{~s}) \end{aligned}$	C1 C1 A1	Possible ecf from (c)(i) Allow: 2 marks for 8.3×10^{2} (s) if 10% is omitted Note: Using $5 \times 10^{4}\left(\mathrm{~W} \mathrm{~m}^{-2}\right)$ gives an answer of 8000 (s)
	(d)		X-ray beam passes through the patient at different angles / X-ray tube rotates around the patient A thin fan-shaped beam is used (AW) Images of 'slices' through the patient (in one plane are produced with the help of computer software) X-ray tube / detectors are moved along (the patient for the next slice through the patient) Advantage: 3D image / better contrast between different (soft) tissues	B1 B1 B1 B1 B1	
			Total	14	

Question			Answer	Marks	Guidance
7	(a)		Any six from: 1. Protons / nuclei have spin or they behave like (tiny) magnets 2. Protons precess around the magnetic field (provided by the strong electromagnet) 3. The frequency of precession is known as the Larmor frequency 4. (Transmitting) coils provide (pulses of) radio waves (of frequency equal to the Larmor frequency) 5. The protons absorb energy (from the radio waves) / resonate and enter into a high energy state (AW) 6. When protons return back to their low energy state and they emit (photons of) radio waves 7. The relaxation time is the (average) time taken for the protons to return back to their normal / low energy state 8. The relaxation time depends on the tissues (A computer processes all the signals from the receiving coils and with the help of computer software generates a 3D image)	B1 $\times 6$	Not: Atoms / particles Note: Must have reference to radio (waves) in 4 and 6 Allow 'excited' for 'high-energy state' Allow: Relaxing protons emit radio waves
	(b)		Disadvantage: Patient with metallic objects cannot be scanned / patient has to remain still (for a long time) / confined space / difficult for patient suffering from claustrophobia / or another suitable suggestion Advantage: Non-ionising /non invasive / better contrast (between soft tissues) / or another suitable suggestion	B1 B1	Not '3 D image' because it is given in (a)
			Total	8	

Question			Answer	Marks	Guidance
8	(a)		Any three from: 1. (Interstellar dust and gas) cloud is drawn together by gravitational force / gravity 2. Loss in (gravitational) PE / KE increases / temperature increases 3. Fusion (of protons / hydrogen nuclei) takes place 4. Energy is released in fusion reactions 5. A stable star is formed when gravitational pressure is equal to internal / gas / radiation pressure QWC: The steps in the process are correctly sequenced	$\mathrm{B} 1 \times 3$	Allow: 'gravitational collapse’
	(b)	(i)	Any two from: (extremely) dense / (very) hot / low luminosity no fusion reactions occur it is a remnant of a low-mass star correct reference to Fermi pressure / electron degeneracy / Chandrasekhar's limit	$B 1 \times 2$	
		(ii)	Red giant identified (It is cooler but has) large surface area (and therefore radiates large amounts of energy)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
			Total	8	

Question			Answer	Marks	Guidance
9	(a)		The night sky should be bright / have uniform brightness (but it is not) The line of sight ends on (the surface of a star) or 'number of stars $\propto r^{2}$ and intensity $\propto 1 / r^{2}$ Any two assumptions about the Universe: Infinite / uniformly distributed matter or stars throughout / static / infinite age	B1 B1 B1	
	(b)		(recessional) speed of galaxy \propto its distance (from the Earth) The universe is finite / it is expanding / it has a beginning / visible light is red-shifted (because of expansion of space) (AW)	B1 B1	Allow: $v=H_{0} x, v=$ (recessional) speed of galaxy, $x=$ distance and H_{0} is Hubble constant / a constant
	(c)	(i)	$\begin{aligned} & v=H_{0} x \\ & 3.4 \times 10^{7}=H_{0} \times 1.4 \times 10^{25} \\ & H_{0}=2.4 \times 10^{-18} \end{aligned}$ unit: s^{-1}	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Note: This is an independent mark Note: Allow full credit for an Hubble constant of 75 with unit $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$
		(ii)1	$\begin{aligned} & \text { age }=\frac{1}{2.4 \times 10^{-18}} \\ & \text { age }=4.17 \times 10^{17}(\mathrm{~s}) \\ & \text { age }=1.3 \times 10^{10}(\text { years }) \end{aligned}$	C1 A1	Possible ecf from (i)
		(ii)2	$\begin{aligned} & \text { distance }=4.17 \times 10^{17} \times 3.0 \times 10^{8}\left(=1.25 \times 10^{26} \mathrm{~m}\right) \\ & \text { distance }=\frac{4.17 \times 10^{17} \times 3.0 \times 10^{8}}{3.1 \times 10^{16}} \\ & \text { distance }=4.0 \times 10^{9}(\mathrm{pc}) \end{aligned}$	C1 A1	Possible ecf from (ii)1
			Total	12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Physics A

Advanced GCE

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels,Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

The following annotations are available on SCORIS.

Annotation	Meaning
\checkmark	correct response
\boldsymbol{x}	incorrect response
AE	arithmetic error
BOD	benefit of the doubt (where professional judgement has been used)
NBOD	benefit of the doubt not given
ECF	error carried forward
\wedge	information omitted
CON	contradiction (in cases where candidates contradict themselves in the same response)
RE	rounding error
SF	error in the number of significant figures
POT	error in the power of 10 in a calculation
$?$	wrong physics or equation
NAQ	not answered question
FT	follow through

The following annotations are available on the marking scheme:

Annotation	Meaning
\boldsymbol{l}	alternative and acceptable answers for the same marking point
(1)	separates marking points
not	answers that can be accepted
reject	answers which are not worthy of credit
ignore	answers which are not worthy of credit
()	statements which are irrelevant
$\overline{\text { ecf }}$	words which are not essential to gain credit
AW	underlined words must be present in answer to score a mark
ora	error carried forward

Subject-specific Marking Instructions

One tick per mark. All questions must have appropriate annotation.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.
A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures and rounding errors:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.
Penalise a rounding error once only in the entire paper.

Question			Answer	Marks	Guidance
1	(a)		Series branch: Using $\left(100^{-1}+300^{-1}\right)^{-1}$ and $C=75(\mu \mathrm{~F})$ capacitance $=500+75$ capacitance $=575(\mu \mathrm{~F})$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Possible ecf, if capacitance of series branch is incorrect
	(b)	(i)	Time constant method: 37% of 6.0 V is 2.2 V . The time taken to reach 2.2 V is equal to the time constant $\begin{aligned} & \text { time constant }=60(\mathrm{~s}) \quad / \quad \mathrm{CR}=60(\mathrm{~s}) \\ & 500 \times 10^{-6} \times R=60 \\ & R=\frac{60}{500 \times 10^{-6}} \\ & \text { resistance }=1.2 \times 10^{5}(\Omega) \end{aligned}$ Substitution method: Correct values for p.ds and t substituted into $V=V_{0} e^{-\frac{t}{C R}}$ Correct values substituted into $\ln \left(V / V_{0}\right)=-\frac{t}{C R}$ resistance $=1.2 \times 10^{5}(\Omega)$	C1 C1 A1 C1 C1 A1	Note: Allow full credit for other correct methods Allow: time constant in the range 58 s to 62 s Deduct 1 mark for misreading graph followed by ecf Note: If C value from (a) is used, then deduct 1 mark followed by ecf Eg: $2.2=6.0 e^{-\frac{60}{C R}}-$ values read to ± 1 small square $E g: \ln (2.2 / 6.0)=-\frac{60}{500 \times 10^{-6} \times R}$ Note: If C value from (a) is used, then deduct 1 mark followed by ecf. Using $575(\mu \mathrm{~F})$ gives $1.04 \times 10^{5}(\Omega)$
		(ii)	Correct p.ds from graph: $6(\mathrm{~V})$ and $3.6(\mathrm{~V})$ $\frac{1}{2} \times 500 \times 10^{-6} \times 6.0^{2}$ or $\frac{1}{2} \times 500 \times 10^{-6} \times 3.6^{2}$ energy is $9.00 \times 10^{-3}(\mathrm{~J})$ and $3.24 \times 10^{-3}(\mathrm{~J})$ energy lost $=5.76 \times 10^{-3}(\mathrm{~J})$ or $5.8 \times 10^{-3}(\mathrm{~J})$	C1 C1 A1	Allow V value to be in the range 3.5 V to 3.7 at 30 s Note: Do not penalise 10^{n} error from (b)(ii) again here Allow 1 mark for: $\frac{1}{2} \times 500 \times 10^{-6} \times(6.0-3.6)^{2}=1.44 \times 10^{-3}(\mathrm{~J})$ Note: Do not penalise use of $575 \mu \mathrm{~F}$ again. This gives a value of $6.62 \times 10^{-3}(\mathrm{~J})$
			Total	8	

Question			Answer		Marks	Guidance
2	(a)		$\begin{aligned} & \text { number }=\frac{2.8 \times 10^{-9}}{1.6 \times 10^{-19}} \\ & \text { number }=1.75 \times 10^{10} \text { or } 1.8 \times 10^{10} \end{aligned}$		B1	Ignore a negative sign
	(b)		$\begin{aligned} & F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & F=\frac{2.8 \times 10^{-9} \times 2.8 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times\left(2.0 \times 10^{-2}\right)^{2}} \\ & \text { force }=1.76 \times 10^{-4}(\mathrm{~N}) \text { or } 1.8 \times 10^{-4}(\mathrm{~N}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: No credit for using charge equal to e
	(c)	(i)	Tension and weight		B1	Allow: force provided by the string / force in the string instead of tension Not: 'gravity' for weight Allow: force due to gravity Allow: gravitational (force)
		(ii)	$\begin{aligned} & (\text { weight }=) 6.5 \times 10^{-5} \times g \\ & \tan \theta=1.76 \times 10^{-4} / 6.38 \times 10^{-4} \\ & \theta=15^{\circ} \end{aligned}$ Or Scale drawing of triangle of force θ in the range 13° to 18° θ in the range 14° to 16°		C1 C1 A1 C1 A1 A1	Deduct 1 mark for the use of $10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ followed by ecf Note that getting to this stage scores both C1 marks Possible ecf from (b) Note: No marks if mass is used instead of the weight
				Total	7	

Question			Answer	Marks	Guidance
3	(a)		Arrow to the left	B1	
	(b)	(i)	1500 (eV)	B1	Note: $2.4 \times 10^{-16}(\mathrm{~J})$ on the answer line scores zero
		(ii)	$\begin{aligned} & (\mathrm{KE}=) 1500 \times 1.6 \times 10^{-19}\left(=2.4 \times 10^{-16} \mathrm{~J}\right) \\ & 2.4 \times 10^{-16}=\frac{1}{2} \times 9.11 \times 10^{-31} \times v^{2} \quad \text { (Allow any subject) } \\ & v=2.3 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (b)(i) Allow: 2 marks for 5.3×10^{14} (answer not square-rooted) Note: $v=\sqrt{\frac{2 \times 1500}{9.11 \times 10^{-31}}}=5.74 \times 10^{16}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ does not score
	(c)	(i)	$F_{(\mathrm{E})}=E q \quad$ and $\quad F_{(\mathrm{M})}=B q v$ $E q=B q v \quad$ (This mark is for equating the two equations) (Hence) $v=\frac{E}{B}$	M1 A1	Allow an equivalent approach Allow any subject
		(ii)	Force due to magnetic field $>$ force due to electric field Electrons drift 'downwards'	B1 B1	Allow: magnetic force $>$ electric force or $F_{M}>F_{E}$ or $B q v>E q$ or magnetic force is bigger and electric force is the same Note: This mark can be scored on Fig. 3.2
			Tota	9	

Question			Answer	Marks	Guidance
4	(a)		magnetic flux $=$ magnetic flux density \times area normal to the field	B1	Allow: $\phi=B A$, with terms defined; $B=$ magnetic flux density or magnetic field strength and $A=$ area normal to the field Note: If angle is used in the definition then it must be defined correctly
	(b)	(i)	$\begin{aligned} & R=\frac{1.7 \times 10^{-8} \times 130}{\pi \times\left(4.6 \times 10^{-4}\right)^{2}} \quad \text { (Any subject) } \\ & R=3.3(2)(\Omega) \\ & \text { current }=\frac{24}{3.32} \\ & \text { current }=7.2(\mathrm{~A}) \end{aligned}$	C1 C1 A1	Allow: Possible ecf if value for R is incorrect after attempted use of the equation $R=\frac{\rho L}{\pi r^{2}}$.
		(ii)	e.m.f. = rate of change of magnetic flux linkage (initial $\phi=$) $0.090 \times 1.3 \times 10^{-3}$ or 1.17×10^{-4} $\begin{aligned} & 150=\frac{1100 \times 0.090 \times 1.3 \times 10^{-3}}{t} \quad(\text { Any subject }) \\ & \text { time }=8.6 \times 10^{-4}(\mathrm{~s}) \end{aligned}$	C1 C1 A1	Allow: (initial $N \phi=$) $0.090 \times 1.3 \times 10^{-3} \times 1100$ or 0.129 Allow: 2 marks for 7.8×10^{-7} (s) if 1100 turns omitted
			Total	7	

Question		Answer	Marks		
5	(a)	(i)	Any number in the range: 10^{4} to 10^{5}	Guidance	
		(ii) 1	$10^{-14}=\frac{h}{m v}$ momentum $=\frac{6.63 \times 10^{-34}}{10^{-14}}$ momentum $=6.6 \times 10^{-20}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	Allow 1 sf answer of $7 \times 10^{-20}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$

Question			Answer	Marks	Guidance
6	(a)		Impossible to predict when a nucleus will decay or impossible to predict which nucleus will decay	B1	
	(b)		$\begin{aligned} & N=N_{0} e^{-\lambda t} \\ & (\lambda=) 0.693 / 7.1 \times 10^{8} \\ & \lambda=9.76 \times 10^{-10} y^{-1} \\ & 0.011=e^{-\left(9.76 \times 10^{-10} \times t\right)} \\ & (\text { age }=) \frac{\ln (0.011)}{-9.76 \times 10^{-10}} \\ & \text { age }=4.6 \times 10^{9}(y) \end{aligned}$	C1 C1 A1	Alternatives: $\begin{aligned} & N=N_{0} e^{-\lambda t} \\ & (\lambda=) 0.693 /\left[7.1 \times 10^{8} \times 3.16 \times 10^{7}\right] \\ & \lambda=3.089 \times 10^{-17} \mathrm{~s}^{-1} \end{aligned} \quad \mathrm{C} 1$
	(c)	(i)	number in the range 50 to 70	B1	
		(ii)	Correct reference to binding energy. Eg: The BE per nucleon will decrease for fusion (which is impossible unless external energy is supplied) (AW)	B1	

Question	Answer	Marks	Guidance
(iii)	$\begin{aligned} & (\text { mass of nucleons }=) 4 \times 1.673 \times 10^{-27}+4 \times 1.675 \times 10^{-27} \\ & (\Delta m=)\left[4 \times 1.673 \times 10^{-27}+4 \times 1.675 \times 10^{-27}\right]-1.329 \times 10^{-26} \\ & (\text { mass defect }=) 1.020 \times 10^{-28}(\mathrm{~kg}) \\ & B E=\text { mass defect } \times c^{2} \\ & (B E=) 1.020 \times 10^{-28} \times\left(3.0 \times 10^{8}\right)^{2}\left(=9.180 \times 10^{-12} \mathrm{~J}\right) \\ & (B E \text { per nucleon })=9.180 \times 10^{-12} / 8 \\ & B E \text { per nucleon }=1.148 \times 10^{-12}(\mathrm{~J}) \end{aligned}$	C1 C1 C1 A1	Allow, due to misinterpretation of Data, Formulae and Relationship Booklet, the following (though incorrect): $\begin{array}{ll} \text { (nucleon mass }=) 8 \times 1.661 \times 10^{-27}(\mathrm{~kg}) & \mathrm{C} 1 \\ (\Delta m=)\left[8 \times 1.661 \times 10^{-27}\right]-1.329 \times 10^{-26}(\mathrm{~kg}) & \mathrm{C} 1 \\ (\mathrm{BE}=)(-) 2.0 \times 10^{-30} \times\left(3.0 \times 10^{8}\right)^{2}\left(=1.8 \times 10^{-13} \mathrm{~J}\right) & \mathrm{C} 1 \\ (B E \text { per nucleon }=) 1.8 \times 10^{-13} / 8 & \\ \text { BE per nucleon }=2.25 \times 10^{-14}(\mathrm{~J}) & \text { A1 } \end{array}$ Allow 2 sf or 3 sf answer
	Total	10	

Question		Answer	Marks	Guidance
7	(a)	Any two from: - Can travel in a vacuum - Travel at the speed of light / c/3 $30^{8} \mathrm{~m} \mathrm{~s}^{-1}$ in vacuum - No charge / no (rest) mass - (Highly) ionising	$B 1 \times 2$	Not: EM radiation / wave because not particulate nature Not: Short wavelength or high frequency Not: High energy photons Not: reflect / refract / diffract
	(b)	$\begin{aligned} & \frac{h c}{\lambda} \text { and } E=m c^{2} \\ & \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda}=2 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2} \\ & \text { wavelength }=1.2 \times 10^{-12}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow: $\frac{h c}{\lambda}$ and $1.02 \underline{\mathrm{MeV}}$ or $0.51 \underline{\mathrm{MeV}}$ for this first C1 mark Allow: Correct use of mass $=0.00055 \mathrm{u}$ Allow: 2 marks for $2.4 \times 10^{-12}(\mathrm{~m})$ for omitting factor of 2 Note: Using the de Broglie equation with $v=c$, also gives an answer of $2.4 \times 10^{-12}(\mathrm{~m})$; this scores zero - see below: $\lambda=\frac{h}{m v}=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.0 \times 10^{8}}=2.4 \times 10^{-12} \mathrm{~m} \text { scores zero }$
	(c)	Barium / iodine (Contrast medium absorbs X-rays because it) has large attenuation coefficient / has large absorption coefficient / has large Z values Ideal for imaging the outline (of soft tissues)	B1 B1 B1	Not: X-rays are (easily) absorbed by the contrast material Allow: If there is a hole then the barium shows this up by flowing out / Barium is used to find blockage with explanation
		Total	8	

Question			Answer	Marks	Guidance
10	(a)		$\begin{aligned} & (\text { distance }=) 3.0 \times 10^{8} \times 3.16 \times 10^{7} \\ & \text { distance }=9.48 \times 10^{15}(\mathrm{~m}) \approx 9.5 \times 10^{15}(\mathrm{~m}) \end{aligned}$	B1	Allow: (distance =) $3.0 \times 10^{8} \times 365(1 / 4) \times 24 \times 3600$ Allow 1 mark for bald $9.48 \times 10^{15}(\mathrm{~m})$
	(b)		Correct labelling of $1 \mathrm{pc}, 1 \mathrm{AU}$ and $1^{\prime \prime}$	B1	Allow: 'hypotenuse' labelled as 1 pc
	(c)	(i)	$\begin{aligned} & (\text { distance }=) 9.5 \times 10^{15} \times 2.1 \times 10^{7}(\mathrm{~m}) \text { or } 2.0 \times 10^{23}(\mathrm{~m}) \\ & (\text { distance in } \mathrm{pc}=) 2.0 \times 10^{23} / 3.1 \times 10^{16} \\ & \text { distance }=6.4 \times 10^{6}(\mathrm{pc}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (a)
		(ii)	$\begin{aligned} & (\text { time }=) 10^{44} / 4 \times 10^{26}(\mathrm{~s}) \text { or } 2.5 \times 10^{17}(\mathrm{~s}) \\ & (\text { time }=) 2.5 \times 10^{17} / 3.16 \times 10^{7} \\ & \text { time }=7.9 \times 10^{9} \text { years } \end{aligned}$	C1 A1	Allow: 1 sf answer of 8×10^{9} years
	(d)		Any one from: - Very dense / infinite density / very small / singularity Any one from: - (Very strong gravitational field therefore) light cannot escape from it / curves space / slows down time / emits Hawking radiation	B1 B1	
			Total	8	

Question			Answer	Marks	Guidance
11	(a)	(i)	$\begin{aligned} & H_{0}=1 / \text { age } \\ & H_{0}=1 /\left(13.7 \times 10^{9} \times 3.16 \times 10^{7}\right) \\ & \left(H_{0}=2.31 \times 10^{-18}\left(\mathrm{~s}^{-1}\right)\right. \\ & \left(H_{0}=\right) \frac{2.31 \times 10^{-18} \times 3.09 \times 10^{16} \times 10^{6}}{10^{3}} \\ & \text { Hubble constant }=71.4\left(\mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \end{aligned}$ A1	Allow: 2 sf answer Special case: Using $H_{0}=1 / 13.7 \times 10^{9}=7.30 \times 10^{-11}\left(\mathrm{y}^{-1}\right)$ gives an answer of $2.26 \times 10^{9}\left(\mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}\right)$ allow 1 mark
		(ii)	$\begin{aligned} & v=H_{0} \mathrm{~d} \\ & (v=) 71.4 \times 50 \text { or } 3.57 \times 10^{3}\left(\mathrm{~km} \mathrm{~s}^{-1}\right) \text { or } 3.57 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \frac{\Delta \lambda}{\lambda}=\frac{3.57 \times 10^{6}}{3.0 \times 10^{8}}\left(=1.19 \times 10^{-2}\right) \\ & \Delta \lambda=656 \times 1.19 \times 10^{-2} \text { or } \Delta \lambda=7.80(\mathrm{~nm}) \\ & \text { wavelength }=656+7.80 \\ & \text { wavelength }=664(\mathrm{~nm}) \end{aligned}$	C1 C1 C1 A1	Possible ecf from (a) Allow: 2sf answer
	(b)		Big bang: Creation of the universe (from which space/time evolved) (AW) Any three from: 1. (At the start) the universe was hot / infinitely dense 2. Expansion of the universe led to cooling 3. The (current) temperature of universe is $2.7 \mathrm{~K} / 3 \mathrm{~K}$ 4. (The universe as a black body) is associated with microwaves at this temperature (AW) or The (wavelength of the) gamma radiation stretched to microwaves (by the expansion). QWC: (Cosmological principle is supported because) MBR is isotropic	B1 $\mathrm{B} 1 \times 3$ B1	Not: The universe now has microwaves. (The microwaves must be linked with current temperature) Allow: Microwaves have the same intensity in all directions

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (c) | (For an open / flat universe)
 Further expansion will lead to cooling / temperature lower
 than 3K / temperature tend to absolute zero (AW) | B1 | Alternative:
 Temperature (will eventually) increases if closed universe B1
 The wavelength (of EM radiation) get smaller
 B1 | |
| | (d) | The wavelength (of the EM radiation) gets longer /
 frequency (of the EM radiation) gets smaller / energy of
 photons decreases / microwaves become radio waves | B1 | |
| | Graph starting from origin and having a shape consistent
 with either open or accelerated universe | B1 | Not a straight line | |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

