

GCE

Physics A

Advanced GCE G485

Fields, Particles and Frontiers of Physics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

June 2010

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Convention used when marking scripts

WRONG PHYSICS OR EQUATION - indicate by ? on scoris

No credit is given for correct substitution, or subsequent arithmetic, in a physically incorrect equation.

$\ensuremath{\mathsf{ERROR}}$ $\ensuremath{\mathsf{CARRIED}}$ $\ensuremath{\mathsf{FORWARD}}$ - indicate by $\ensuremath{\mathsf{ECF}}$ on scoris

Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers.

$\label{eq:arithmetic error} \textbf{ARITHMETIC ERROR} - \text{indicate by } \textbf{AE} \text{ on scoris}$

Deduct 1 mark for the error and then follow through the working/calculation giving full credit for subsequent marks if there are no further errors. The ruling also includes power of ten (POT).

TRANSCRIPTION ERROR - indicate by ^ on scoris

This error is when there is incorrect transcription of data from the question, formulae booklet or previous answer. For example 1.6×10^{-19} has been written down as 6.1×10^{-19} or 1.6×10^{19} . Deduct the relevant mark and then follow through the working giving full credit for subsequent marks.

SIGNIFICANT FIGURES - indicate by SF on scoris

Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. An error in significant figures is penalised only once per paper.

BENEFIT OF DOUBT - indicate by BOD on scoris

This mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.

RUBRIC INFRINGEMENT

If the candidate crosses out an answer but does not make any other attempt, then the work that is crossed out should be marked and the marks awarded without penalty.

CONTRADICTION – indicate by **CON** on scoris No mark can be awarded if the candidate contradicts himself or herself in the same response. For example, '... the mass of the particle increases and decreases.'

Qı	Jest	ion	Expected Answers	Marks	Additional Guidance
1	а		Capacitance = charge per (unit) potential difference	B1	Allow: capacitance = charge / potential difference, charge/pd, charge/voltage but not charge / volt, coulomb /pd (no mixture of quantities and units. Allow 'over' instead of per
	b	(i)	Q = CV = 4.5 µ x 6.3 = 28.(35) (µC)	B1	Allow: 28 (≥ 2 sf)
		(ii)	$E = \frac{1}{2} CV^2 = 0.5 \times 4.5 \times \mu \times (6.3)^2$	C1	Allow use of $E = \frac{1}{2}$ QV and the Q value from (b)(i) Q=28 E= 8.82 and Q=28.4 E=8.946
			= 8.9(3) x 10 ⁻⁵ (J) / 89.3 µ(J)	A1	Allow ecf from (b)(i) penalise power of ten error (-1)
	С	(i)	Electrons / they move in an anticlockwise direction	B1	Alternatives for anticlockwise: from / lower plate around the circuit, from / lower plate through the resistor to top plate implied
			Charge on plates decreases / electrons neutralise positive charge	B1	Capacitor discharges / loses charge
			p.d. decreases <u>exponentially</u>	B1	
		(ii)	(dissipated as heat) in the resistor / wires	B1	
	d	(i)	Total capacitance = $1.5 + 4.5 = 6(.0)$ (µF)	A1	Allow one SF
		(ii)	Original charge on 4.5 μ F capacitor is conserved (28.35 μ C)	C1	ecf from (b)(i) and (d)(i)
			V = $(28.35 \ \mu) / (1.5 + 4.5) \ \mu = 4.7 \ (V)$ Total	A1 [11]	

Qu	est	ion	Expected Answers	Marks	Additional Guidance	
2	а		static / homogeneous	B1	Uniform (density)	
			infinite / infinite number of stars	B1	Do not allow isotropic or fixed	
	b	(i)	gradient of graph = H_0	C1		
			value $H_0 = 66 \pm 4$ (km s ⁻¹ Mpc ⁻¹)	A1		
		(ii)	value $H_0 = 66 \pm 4$ (km s ⁻¹ Mpc ⁻¹) age = 1 / H_0 ($H_0 = 2.1 \times 10^{-18} \text{ s}^{-1}$)	C1	ecf from H ₀ value	
			$= (1 / 66 \times 3.2 \times 10^{-20} \times 3.2 \times 10^{7})$	C1	Or correct age in seconds (4.7 x 10 ¹⁷ s)	
			$= 1.5 \times 10^{10} (1.48 \times 10^{10}) $ (year)	A1	Answer will depend on H ₀ value in (b)(i) Minus one if Mega or kilo omitted	
	С	(i)	$\rho_{c} = 3H_{0}^{2} / 8\pi G$ = [3 x (2.1 x 10 ⁻¹⁸) ²] / (8 x \pi x 6.67 x 10 ⁻¹¹) = 7.9 x 10 ⁻²⁷ (kg m ⁻³)	C1 A1	If units of H ₀ not converted or converted incorrectly then maximum one out of two ecf from H ₀ value in (b)(i)	
		(ii)	if average density of the Universe is less than critical then it will be too small to stop it expanding / it goes on forever	B1	do not allow answers open, closed and flat	
			if the average density of the Universe is greater than the critical value it will cause the contraction (and produce a big crunch)	B1		
			close to critical value and therefore a universe expands that will go towards a limit / expands at an ever decreasing rate asymptotic	B1		

Mark Scheme

G485

June	2010
------	------

2	d	galaxies are moving apart / universe is expanding	(B1)	Allow stars for galaxies
		if galaxies have always been moving apart then at some stage they must have been closer together / or started from a point	(B1)	allow from a singularity
		evidence in red shift either optical / microwave	(B1)	allow statement that red shift is observed or that blue light becomes red or gamma from big bang has become microwave
		further away the galaxy the faster the speed of recession	(B1)	becomes red of gamma nom big bang has become microwave
		the existence of a (2.7 K) <u>microwave</u> background radiation	(B1)	
		there is more helium in the universe than expected	(B1)	
		MAX 4	B4	
		Total	[16]	

Qı	uest	ion	Expected Answers	Marks	Additional Guidance
3	а	(i)	uniformly spaced, vertical parallel lines must begin and end on the plates with a minimum of three lines	B1	ignore any edge effects
			arrow in the correct direction down	B1	
		(ii)	$E = V / d \qquad E = 60 / 5 \times 10^{-3} = 12000 (V m^{-1})$	A1	
	b	(i)	Use of energy qV and kinetic energy = $\frac{1}{2}$ mv ²	M1	
			$v = [(2qV)/m]^{1/2}$		
			$v = [(2 \times 3.2 \times 10^{-19} \times 400)/6.6 \times 10^{-27}]^{1/2}$	M1	
			v = 1.97 x 10 ⁵ (m s ⁻¹)	A0	
		(ii)	a = F/m $a = Eq/m$	C1	Both required for the mark
			a = $(12000 \times 3.2 \times 10^{-19}) / 6.6 \times 10^{-27})$		
			$= 5.82 \times 10^{11} \text{ (m s}^{-2}\text{)}$	A1	
		(iii)	1 $t = (16 \times 10^{-3}) / 2 \times 10^{5}$	M1	Answer will depend on number of sf used by candidate.
			$= 8 \times 10^{-8} (s)$	A0	
			2 $s = \frac{1}{2} a x t^2 = \frac{1}{2} [5.82 x 10^{11} x (8 x 10^{-8})^2]$	C1	Using $u = 2 \times 10^5$ scores 0/2
			= 1.86 x 10 ⁻³ (m)	A1	Allow slight variation in answers that follow from the candidates working

С	Eq = Bqv	C1	
	$B = E / v = 12000 / 2 \times 10^5$	C1	
	= 0.060 (T)	A1	Allow one sf unless answer is 0.061 when using v =1.97 x 10^5
d	velocity (produced by p.d / 400 V) is less	B1	
	force due the magnetic field is reduced / Bqv is less / force due to the electric field is unchanged hence beam deflects <u>down</u>	B1	Allow the resultant force is downward Allow towards the lower plate
	Total	[15]	

Q	ues	tion	Expected Answers	Marks	Additional Guidance
4	а		magnetic flux = magnetic flux density x area (perpendicular to field direction)	B1	Allow equation with the symbols identified correctly Do not allow magnetic field or magnetic field strength
	b		$\Phi = NBA = 500 \times 0.035 \times 2.5 \times 10^{-3}$	C1	
			= 0.044 (0.04375)	A1	[allow for one mark 8.75 x 10^{-5} (Wb) i.e. B x A]
			unit: Wb	B1	Allow: Wb turns and T m ² and V s
	С	(i)	The component of B perpendicular to the area changes / the idea that the area changes relative to the field direction	B1	Allow the idea that the direction of the field relative to the area of the coil varies with the orientation of the coil Do not allow reference to cutting of the flux by the coil
			detail of how it varies / depends on cos θ / maximum when field is perpendicular to B / zero when area is parallel to B	B1	
		(ii)	Induced / e.m.f is proportional / to the rate of change of (magnetic) flux	B1	Allow the emf produced is equal to the rate of change of flux or flux cutting
		(iii)	e.m.f. max when ϕ is zero or at 0.005 /0.015 /0.025	(B1)	
			s e.m.f zero when	(B1)	
			e.m.f. and ϕ have the same frequency	(B1)	
			allow e.m.f and ϕ out of phase by $\pi/2$ / emf follows a sin curve	(B1)	
			emf is the gradient of the graph MAX 3	(B1) B3	

		Total	[14]	
				Allow the max gradient will double
		as the rate of flux change is twice the original	B1	Allow: the change in magnetic flux occurs in half the time
		Max e.m.f. is twice the original value	B1	Do not allow just larger
-	(v)			
		= 8.75 (V)	A1	[reading error from graph is penalised -1 (should be 8.8 and not 8.4)]
		$= 0.04375 / 0.005 (8.8 \times 10^{-5} \times 500) / 0.005$	C1	[if N omitted then give one mark ($\epsilon = 0.0175$)] [if 10 ⁻⁵ omitted then minus 1]
4	(iv)	ϵ = (change in flux linkage) / time		

Mark Scheme

Qu	estio	Expected Answers	Marks	Additional Guidance
5	a	Magnetic resonance: some nuclei behave as small magnets / certain nuclei possess a net spin / nuclei line up in the magnetic field Need for a strong magnetic field the frequency of precession is known as Lamor frequency (1)	B1 B1	Allow protons instead of nuclei in the context of hydrogen nuclei or a single proton instead of nuclei There are 5 essential marks (in bold) and a maximum of THREE extra marks (1)
		Application of RF pulses produces resonance / flip energy states (1)	B1	Maximum of 8 marks Do not allow 'atoms' for nuclei but penalise once
		RF pulse turned off nuclei relax / flip back (and emit RF signal)	B1	only Please annotate scripts as follows: Essential marks: √(ticks) on left hand side of
		RF detected (by coil receiver) and processed (1)		candidate's work Extra marks: ✓(ticks) on right hand side of
		Use of non-uniform field / gradient field (1) To locate position of nuclei in body (1)		candidate's work
		QWC mark: difference in the relaxation times for hydrogen in different tissues / materials MAX (3) MAX 8	B1	
			MAX B8	

5	b	Advantage: not ionising radiation (as with X-rays) / better soft tissue contrast	B1	Accept can view soft tissue in brain / skull Do not allow not harmful Do not allow no side effects
		Disadvantage: heating effect of metal objects /effect on cardiac pacemakers / takes a long time to perform MRI scan	B1	
		Total	[10]	

Q	ues	tion	Expected Answers	Marks	Additional Guidance
6	а	(i)	$A = \lambda N_0 = 4.5 \times 10^{23} \times 0.693 / (12 \times 3600)$	C1	allow one mark if the 12 hours is not converted into seconds. Answer is 2.6×10^{22} Allow one mark if the 12 hours is converted into minutes
			= 7.22 x 10 ¹⁸ (s ⁻¹)	A1	Answer 4.33 x 10 ²⁰
		(ii)	3 half lives $N = 5.6 \times 10^{22}$	A1	
		(iii)	$N = N_0 e^{-\lambda t}$ = 4.5 x 10 ²³ x e ^{-(0.693 x 50/12)} or use of 2 ⁿ	C1	use of 2 ⁿ 50/12 half lives
			$= 2.5 \times 10^{22}$	A1	
	b		material with large λ / short half life have initial high activity hence precautions needed for initial period of	(B1)	
			disposal OR	(B1)	
			material with small λ / long half life activity will last for a long period hence need for long term disposal	(B1)	
			MAX 2	(B1)	
				B2	
			Total	[7]	

Q	Question		Expected Answers M		Additional Guidance
7	а	(i)	e: 0 and -1 N: 15 and 7 + (antineutrino)	B1	
		(ii)	e: 0 and +1 Si: 30 and 14 + (neutrino)	B1	Allow 1 for +1
			correct 'neutrino' in each case	B1	Correct symbols required for the neutrinos: ν and (Allow ν_e and ($_e$
	b	(i)	uud \rightarrow udd	B1	Allow $u \rightarrow d$
		(ii)	$udd \rightarrow uud$	B1	Allow $d \rightarrow u$
	С		weak(nuclear force)	B1	
			Total	[6]	

Q	ues	tion	Expected Answers	Marks	Additional Guidance
8	а	(i)	mass of uranium is greater than (the sum of) the mass of the products	M1	
			$E = \Delta mc^2$	A1	
			OR		
			binding energy of the products is greater than that of uranium	M1	
			energy available is the difference between the binding energies of uranium and the sum of the products	A1	
		(ii)	kinetic energy	B1	
	b	(i)	the neutron is a single nucleon / cannot be split further / no binding has occurred	B1	The neutron is not bound to anything
		(ii)	binding energy of uranium = $235 \times 7.6 = 1786$ binding energy of products = $141 \times 8.3 + 92 \times 8.7$ = $1170.3 + 800.4$	C1	An answer of 9.4 (not using the number of nucleons) scores zero
			energy available = 184.7 (MeV)	A1	Allow ≥ 2 sf (180, 185, 184.7) Penalise 184 as an AE
			Total	[6]	

Q	uest	tion	Expected Answers	Marks	Additional Guidance
9	a		$F = Q_1 Q_2 / 4\pi \varepsilon_0 r^2$ = (1.6 x 10 ⁻¹⁹ x 1.6 x 10 ⁻¹⁹) / $4\pi \varepsilon_0 (2x 10^{-15})^2$ = 57.5 (N)	C1 A1	Allow use of 9 x 10 ⁹ instead of 1 / $4\pi\epsilon_0$ (using this gives 57.6) Allow $\ge 2sf$ (58) If correct formula quoted and then AE (e.g. not squaring r <u>or</u> not squaring Q) then allow ecf in final answer for 2/3
	b		attractive strong (nuclear force)	B1	Do not it holds them together
	С		as the proton travels towards the stationary proton it experiences a repulsive force that slows it down. (It needs a high velocity) to get close enough (to the proton) / for the (attractive) <u>short range</u> force to have any effect	B1	
				B1	
			Total	[5]	

Questio	n Expected Answers	Marks	Additional Guidance
10 a	 ANY ONE from X-rays interact with matter by: the photoelectric effect where an (orbital) electron is ejected from atom / atom is ionised Compton scattering where X-ray scattered by the interaction with (orbital) electron Pair production where X-ray photon interacts with the nucleus / atom and an electron and positron are produced [allow one mark for statement and one for explanation] 	(B2) (B2) (B2) B2	Allow electrons ejected from metal surface if reference is made to <u>free</u> electrons Allow: X-ray diffraction B1 X-ray passes through the 'slits' / atomic gap formed by the atoms B1
	Max 2		

	b		$I = I_0 e^{-\mu x}$ $0.1 = e^{-\mu 3}$	C1	Calculation of μ =0.768 C1
			$0.5 = e^{-\mu x}$	C1	Substitution into second equation C1
			$\ln 0.5 / \ln 0.1 = x/3$		
			x = 0.903 (mm)	A1	Allow 0.9 (1sf)
					If question misread and 0.9 used for change $\mu = 0.035$ and x = 19.7 (allow 20) give 2/3
10	С	(i)	Absorption of X-rays by (silver halide molecules) by a photographic film	(B1)	
			Uses of fluorescent / scintillator/ phosphor	(B1)	
			Photon releases electron (that is accelerated onto a fluorescent screen)	(B1)	
			number of electrons increased /multiplied	(B1)	
			MAX B2	B2	
			QWC: Phosphor / Intensifier/ it converts X-ray photon into increased number of 'visible' photons		
				B1	

June 2010

Mark Scheme

G485

	Total	[10]	
	MAX B2	B2	
	liquids injected or swallowed into soft tissue areas / or examples of such	(B1)	
	(Contrast media with) high atomic number / Z used / iodine or barium (used to give greater contrast)	(B1)	
(ii)	Different <u>soft</u> body <u>tissue</u> produce little difference in contrast/attenuation	(B1)	This method produces good contrast for soft tissue /for similar Z values

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

Physics A

Advanced GCE

Unit G485: Fields, Particles and Frontiers of Physics

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

C	Questi	on	Expected Answer	Mark	Additional Guidance
1	(a)	(i)	$E = \frac{V}{d} = \frac{2400}{9.4 \times 10^{-3}}$ E = 2.55 × 10 ⁵ (V m ⁻¹)	C1	
			force = $E \times Q = 2.55 \times 10^5 \times 1.60 \times 10^{-19}$ force = 4.09×10^{-14} (N)	A1	Allow 1 mark for 4.1×10^{-n} , $n \neq 14$ Allow 2sf answer of 4.1×10^{-14} (N) Alternative: $F = \frac{Ve}{d} = \frac{2400 \times 1.60 \times 10^{-19}}{9.4 \times 10^{-3}}$ C1 force = $4.08(5) \times 10^{-14}$ (N) [Allow: 4.08×10^{-14} (N)]
		(ii)	KE = $e \times V$ or KE = $F \times d$ KE = $1.6 \times 10^{-19} \times 2400$ or KE = $4.09 \times 10^{-14} \times 9.4 \times 10^{-3}$ KE = 3.84×10^{-16} (J)	C1 A1	Allow 2 sf answer Possible ecf if answer from (a)(i) is used
		(iii)	KE = $\frac{1}{2}mv^2$ $v = \sqrt{\frac{2 \times 3.84 \times 10^{-16}}{9.11 \times 10^{-31}}}$ speed = 2.9(0) × 10 ⁷ (m s ⁻¹)	B1	Possible ecf if answer from (a)(ii) is used
	(b)		There is no change (to the gain in KE)	M1	
			work done or KE = Fd , F or E is halved and d is doubled or work done or KE = VQ and V is the same or work done or KE = VQ and this does not depend on distance	A1	
			Total	7	

C	Questi	on	Expected Answer	Mark	Additional Guidance	
2	(a)		coulomb <u>per</u> volt	B1	Allow : 1 F = 1 CV^{-1}	
	(b)	(i)	Electrons flow 'clockwise' / negative to positive	B1		
			These are deposited on (plate) A (and hence becomes negatively charged) or	B1	Not: A becomes negative / B becomes positive	
			These are removed from (plate) B (and hence become positively charged)			
		(ii)1	$Q = C \times V = 5.4 \times 10^{-9} \times 12$	B1		
			charge = 6.48×10^{-8} (C)	ы		
		(ii)2	energy = $\frac{1}{2}V^2C = \frac{1}{2} \times 12^2 \times 5.4 \times 10^{-9}$			
			energy = 3.89×10^{-7} (J)	B1	Possible ecf if Q used from (ii)1	
	(c)	(i)	$R = \frac{12}{3.24 \times 10^{-6}}$	M1	Allow : ' <i>R</i> = 12/3.24μ' (= 3.7 MΩ)	
			resistance = $3.7 \times 10^6 (\Omega)$	AO		
		(ii)	time constant = CR = $5.4 \times 10^{-9} \times 3.7 \times 10^{6}$ or 0.02 (s)	C1		
			$I = I_0 e^{-t/CR} = 3.24 \times e^{-(0.080/0.020)}$			
			current = 0.059 (μA)	A1	Allow : ecf for time constant Allow : 1 mark for 5.9×10^{-n}	
	(d)		(Total) resistance of circuit <u>halved</u> / time constant is <u>halved</u>	B1		
			Rate of discharge is <u>doubled</u> / (initial) current is <u>doubled</u>	B1		
			Total	10		

Q	uestion	Expected Answer	Mark	Additional Guidance
3	(a)	Perpendicular out of plane of paper	B1	Allow: 'out of paper' Not: 'up the paper'
	(b)	$\frac{mv^2}{R} = BQv$	M1	Allow: Use of <i>r</i> instead of <i>R</i> and <i>e</i> instead of Q
		hence $v = \frac{BQR}{m}$	A0	
	(c)	speed = $\frac{2\pi \times 0.18}{2.0 \times 10^{-8}}$ or 5.66 × 10 ⁷ (m s ⁻¹)	C1	
		$5.66 \times 10^7 = \frac{B \times 1.60 \times 10^{-19} \times 0.18}{1.67 \times 10^{-27}} $ (Any subject)	C1	Allow : ecf for incorrect value for speed v
		B = 3.28 (T)	A1	Alternative :
				$t = \left(\frac{2\pi R}{v}\right) = \frac{2\pi m}{BQ} $ C1
				$B = \frac{2\pi \times 1.67 \times 10^{-27}}{2.0 \times 10^{-8} \times 1.60 \times 10^{-19}} $ C1
				<i>B</i> = 3.28 (T) A1
	(d)	The force / acceleration is perpendicular to the motion / velocity	B1	Allow: 'speed' instead of 'velocity'
		No work is done	B1	
		Total	7	

G	Questi	on	Expected Answer	Mark	Additional Guidance
4	(a)		The speed of recession of a <u>galaxy</u> is proportional to its distance (from Earth / observer)	B1	
	(b)	(i)	$v = \frac{\Delta \lambda}{\lambda} \times c$ $v = 0.15 \times 3.0 \times 10^{8}$ speed = 4.5 × 10 ⁷ (m s ⁻¹)	M1 A0	Allow: '15% of $3.0 \times 10^8 = 4.5 \times 10^7$ (m s ⁻¹)' Not: '0.15 <i>c</i> '
		(ii)	distance = v / H_0 (Any subject) distance = $\frac{4.5 \times 10^7 \times 3.1 \times 10^{22}}{65 \times 10^3}$ distance = 2.15 × 10 ²⁵ (m)	C1 A1	Possible ecf from (b)(i) Allow: 1 mark for 2.15×10^n , n $\neq 25$
		(iii)	$H_0 = \frac{65 \times 10^3}{3.1 \times 10^{22}} (= 2.10 \times 10^{-18} \text{ s}^{-1})$ age = 1/H ₀ = 4.77 × 10 ¹⁷ (s)	C1 A1	
	(c)		 age = 1.49 × 10¹⁰ (y) Any two from: 1. Spectra from galaxies show shift to longer wavelengths (suggests galaxies are moving away from the Earth) 2. The more distant galaxies are moving faster (than the ones closer to our galaxy) 3. Existence of microwave background radiation (which is the same in all directions) / The temperature of universe is 3 K (after cooling due to expansion) / gamma (radiation) became microwaves (as the universe expanded) 4. Existence of primordial helium (produced in the early stages of the universe) 5. Temperature fluctuations (predicted and observed) 	B1 × 2	Allow: 1 mark for 1.49×10^n , $n \neq 10$ Not 'red-shift' for 1.Allow: Reference to CMB (radiation) in 3.Not bald 'ripples' for 5.
			Total	8	

Q	uesti	on	Expected Answer	Mark	Additional Guidance
5	(a)		Diagram showing (star,) 1 AU, 1 pc and angle of 1 arc second <u>Distance</u> from a base length of 1 AU that subtends an angle of 1 (arc) second or Parsec is a <u>distance</u> that gives a (stellar) parallax of 1 second (of arc) / 1/3600°	B1 B1	Allow: 1 pc is the <u>distance</u> calculated using: 1 AU/tan(1/3600°) Not: 1 pc = 3.26 ly Not: 1 pc = 3.1×10^{16} m
	(b)	(i)	distance (pc) = $1 / 0.275$ distance = 3.64 (pc)	B1	
		(ii)	distance in m = $3.1 \times 10^{16} \times 3.64 = 1.127 \times 10^{17}$ (m) distance in ly = $1.127 \times 10^{17}/9.5 \times 10^{15}$ distance in ly = 11.9	C1 A1	Possible ecf from (b)(i) Alternative: 1 pc = 3.26 ly C1 distance = 3.26×3.64 distance 11.9 (y) A1
			Total	5	

Mark Scheme

Q	Question		Expected Answer		Additional Guidance	
6	(a)	(i)	 Any <u>five</u> from: Gas / dust (cloud) drawn together by gravitational forces Loss in (gravitational) PE / KE increases / PE changes KE / temperature increase Fusion of protons / hydrogen <u>nuclei</u> (produces helium 	B1 × 5	Allow: 'Gravitational collapse of dust cloud'	
			 A stable star is formed when radiation pressure is equal to gravitational pressure When hydrogen runs out the <u>outer layers</u> of the star expands / <u>core</u> shrinks <u>Red giant</u> formed / eventually (the core becomes) a <u>white dwarf</u> 			
			QWC mark for 'correct sequencing of the processes from birth to death'	B1		
		(ii)	Supernova followed by	B1		
			neutron star / black hole	B1		
	(b)		$\Delta E = \Delta mc^{2}$ energy = $2.0 \times 10^{30} \times 10^{-6} \times (3.0 \times 10^{8})^{2}$ or $1.8(0) \times 10^{41}$ (J) time = $1.80 \times 10^{41}/3.8 \times 10^{26}$ (= 4.74×10^{14} s)	C1 C1	Alternative: rate = 4.22×10^9 (kg s ⁻¹) time = $2.0 \times 10^{24}/4.22 \times 10^9$ (= 4.74×10^{14} s) time = 1.5×10^7 (y)	C1 C1 A1
			time = $4.74 \times 10^{14}/3.2 \times 10^{7}$ time = 1.5×10^{7} (y)	A1		

Mark Scheme

C	Questi	ion	Expected Answer	Mark	Additional Guidance
6	Questi	ion (i)	 Any <u>four</u> from: 1. Protons / hydrogen <u>nuclei</u> to produce He <u>nuclei</u> (positrons and neutrinos) 2. There is electrostatic repulsion (between the protons) / The protons repel (each other because of their positive charge) 3. High temperatures / 10⁷ K needed (for fusion) 4. (At high temperatures some of the fast moving) protons come close enough to each other for the strong (nuclear) force (to overcome the electrostatic repulsion) 	Mark B1 × 4	Additional Guidance Not: 'heat' in place of temperature in 3.
			 5. High density / pressure (in the core of the Sun) 6. There is a decrease in mass, hence energy is released / products have greater binding energy 		
		(ii)	Kinetic (energy) Electromagnetic / photons	B1 B1	Not : heat / thermal (energy) Not : 'radiation' / 'wave energy'' Allow : Gamma
		(iii)	BE = $4 \times 7.2 = 28.8$ (MeV) BE = $28.8 \times 1.6 \times 10^{-13}$ BE = 4.6×10^{-12} (J)	C1 A1	Possible ecf if BE value is incorrect
			Total	19	

January 2011

Question		on	Expected Answer	Mark	Additional Guidance Allow: reference to 'current' instead of p.d / e.m.f	
7	(a)		The application of a p.d. across a material / crystal causes an expansion / contraction / vibration (ora)			
	(b)		 Any two from: <u>Pulses</u> of ultrasound (sent into the body) Wave / ultrasound / pulse / signal is <u>reflected</u> (at boundary of tissue) Time of delay used to determine depth / thickness The fraction of <u>reflected</u> signal is used to identify the 	B1 B1 × 2	Allow: The reflected signal / ultrasound /amplitude /	
			tissue A-scan in one direction only / range or distance or depth finding	B1	intensity is used to identify the tissue	
			B-scan uses a number of sensors or a sensor in different positions / angles (to build up a 2D/3D image)	B1	Not: 'B-scan is many A-scans'	
	(c)	(i)	$Z = \rho c$; density \rightarrow kg m ⁻³ and speed \rightarrow m s ⁻¹ (Hence $Z \rightarrow$ kg m ⁻² s ⁻¹)	M1 A0		
		(ii)	fraction = $\frac{(7.14 - 1.72)^2}{(7.14 + 1.72)^2}$	C1		
			fraction = $0.37(4)$	A1	Allow: 37 %	
		(iii)	 (Acoustic) impedances of media are similar / identical No / reduced reflection (at boundary) Or The gel allows maximum transmission of ultrasound (into the body) 	B1 B1	Allow: 'The Zs are the same'	
		(iv)	$v = f\lambda$ wavelength = $\frac{1590}{1.2 \times 10^6} (= 1.33 \times 10^{-3} \text{ m})$ (Any subject)	C1	Allow : 1 mark for '4080/1.2 \times 10 ⁶ = 3.4 mm'	
			wavelength = 1.33 (mm)	A1	Allow. I mark for $4080/1.2 \times 10^{\circ} = 3.4 \text{ mm}$	
		(v)	Small wavelength means finer detail can be seen / greater resolution	B1		
			Total	13		

Mark Scheme

Q	Question		Expected Answer		Additional Guidance
8	(a)		 Any <u>five</u> from: 1. Intensifier used as X-ray would pass through film 2. Intensifier converts X-ray <u>photon</u> to many visible (light) <u>photons</u> (which are absorbed by film) 3. *Lower exposure / fewer X-rays needed 4. lodine / barium (used as contrast material) 5. *High Z number / large attenuation coefficient / large absorption coefficient (used to improve image contrast) 6. Contrast media are ingested / injected into the body 7. *Scan shows <u>outline</u> / <u>shape</u> of soft tissue QWC mark is acquired from clear expression of any of the marking points 3, 5 or 7 	B1 × 5	
	(b)		X-rays produce visible light or In photoelectric effect electrons are emitted	B1	
	(c)	(i) (ii)	 Any two from: Simple X-ray is one directional / produces single image CT image(s) taken at different angles / X-ray tube is rotated Computer processes data / image constructed from many slices Any two from: X-ray image is 2D / CT scan produces 3D image 	B1 × 2 B1 × 2	
			 Greater detail / definition / contrast with CT scan / 'soft tissues can be seen' Image can be rotated Total 	10	

F	۶N	ſ	т
Г	10	1	1

G485		Mark Scheme		January 201	
Questio	n	Expected Answer	Mark	Additional Guidance	
9 (a)	(i)	composition for n and p: u d d & u u d	B1		
		charge for n and p: 0 & +1	B1	Allow: charge 'e' instead of '+1' or '1'	
	(ii)	up +2/3 (+1/3) 0	B1	Allow: charges in terms of 'e'	
		down -1/3 +1/3 (0)	B1		
(b)	(i)	${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e + v$	A2	Allow: '→ proton + electron + <u>antineutrino</u> ' Note: -1 for any omission or error. Score = 0 if more than one error	
	(ii)	weak (nuclear)	B1		
	(iii)	lepton(s) <u>and</u> hadron(s) / baryons(s)	B1	Not: Neutrons are mesons	
		Total	8		

Mark Scheme

January 2011

C	luesti	on	Expected Answer Spontaneous: the decay cannot be induced / occurs without external influence Random: cannot predict when / which (nucleus) will decay		Additional Guidance	
10	(a)					
	(h)		next The probability of decay of a <u>nucleus</u>	B1 M1	Allow:	
	(b)		per unit time	A1	$\lambda = A / N$ (Any subject) C1 A = activity and N = number of nuclei A1	
	(c)		Living plants / animals absorb carbon(-14)	B1		
			Once dead, the plant does not take in any more carbon(-14)	B1		
			The fraction of C-14 to C-12 (nuclei) or number of C-14 (nuclei) or activity of C-14 (nuclei) measured in dead <u>and</u> living (sample)	M1		
			$x = x_0 e^{-\lambda t}$ used with data above to estimate the age	A1		
	(d)	(i)1	$\lambda = \ln 2 / T_{1/2}$ decay constant = 1.24 x 10 ⁻⁴ (y ⁻¹)	B1		
		(i)2	$A = A_0 e^{-\lambda t}$			
			$0.194 = 0.249 \times e^{-(1.24 \times 10^{-4} \times t)}$ ln(0.194/0.249) = -1.24 × 10^{-4} t	C1		
			time = 2.0×10^3 (y)	A1		
		(ii)	The activity is (very) small / decay is random	B1		
		(iii)	Activity so low that it cannot be differentiated from the background	B1		
			Total	13		

G485

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Physics A

Advanced GCE

Unit G485: Fields, Particles and Frontiers of Physics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Mark Scheme

G485

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

Significant figures are rigorously assessed in the practical skills. If the data given in a question is to 2 sf, then allow answers to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Additional Guidance.

Que	estion		Expected Answers	Marks	Additional guidance
1	(a)		Electromotive force is the energy transferred (from one form of energy) to <u>electrical per</u> unit charge	B1	Allow: 'electrical energy (gained) per unit charge' Not: electrical energy per coulomb
	(b)		Magnetic flux is the product of the (magnetic) flux density and the area (normal to the field)	B1	Allow: $\phi = BA$, where $B = (magnetic)$ flux density and $A = area$. If $\phi = BA \cos \theta$ is used, then θ must be defined as the angle (between the normal to the plane of the area and the magnetic field) Do not allow 'field strength' for 'flux density'
	(c)	(i)	A changing (magnetic) flux is produced (in the primary coil / in the iron core)	B1	Allow: A changing (magnetic) flux density is produced (in the primary coil) but not ' <i>changing (magnetic) field</i> '
			The iron core links this (magnetic) flux /(magnetic) flux density to the secondary coils	B1	
			The changing (magnetic) flux / (magnetic) flux density through secondary induces e.m.f. (in secondary coils)	B1	Allow: The rate of change of (magnetic) flux (linkage) induces an e.m.f. (in the secondary coil)
		(ii)	Any <u>one</u> from: More coils / turns on secondary Less coils / turns on primary Laminate the core	B1	Not: Increase frequency of alternating supply
	(d)	(i)	$n_{\rm s} = \frac{12}{12}$ (Any subject)	C1	
			4200 230 number of turns = 219 or 220	A1	Note: A bald answer 219 or 220 scores 2 marks
		(ii)	current = $(12.0 - 11.8)/0.35$	C1	
			current = 0.57 (A)	A1	
			$P = VI$ or $P = I^2 R$ or $P = V^2 / R$	C1	
			$P = 0.2 \times 0.57$ or $P = 0.57^2 \times 0.35$ or $P = 0.2^2 / 0.35$ power = 0.114 (W) or 0.11 (W)	A1	Possible e.c.f. from (ii)1
			Total	12	

Que	estion		Expected Answers	Marks	Additional guidance
2	(a)		capacitance = charge / potential difference	B1	Allow: p.d. and voltage Not: charge per volt or coulombs per p.d
	(b)	(i)	$V = Q/C \text{ and } Q = \text{constant in series circuit}$ $V = \frac{450}{450 + 150} \times 6.0$ potential difference = 4.5 (V)	C1 A1	Allow: 1 mark for an answer of 1.5 (V) Note: Using (b)(ii), alternative marking scheme $V = 6.75 \times 10^{-4}/150 \times 10^{-6}$ C1 V = 4.5 V A1
		(ii)	charge = $150 \times 10^{-6} \times 4.5$ charge = 6.75×10^{-4} (C)	B1	Possible e.c.f. Note : Using (b)(iii) $Q = 6.0 \times 1.125 \times 10^{-4} = 6.75 \times 10^{-4}$ (C)
		(iii)	$\frac{1}{C} = \frac{1}{150} + \frac{1}{450} \text{ (working in } \mu\text{F)}$ capacitance C _T = 1.125 × 10 ⁻⁴ (F) or 113 μ (F)	B1	Possible alternative: capacitance = $6.75 \times 10^{-4}/6.0$ capacitance = 1.125×10^{-4} (F) or 113 µ(F) Possible e.c.f. from (ii)
	(c)	(i)	time constant = CR time constant = $1.125 \times 10^{-4} \times 45 \times 10^{3}$ time constant = 5.06 (s)	M1 A0	Note: The mark is for multiplying correct <i>C</i> and <i>R</i> values Possible e.c.f. from (b)(iii)
		(ii)	Graph starting from 6.0 (V)	B1	
			Correct shaped curve	B1	Note: The (exponential decay) curve must not touch or cut the time axis
			Approximately correct value of V at CR	B1	Note: <i>V</i> is 2 to 2.5 (V) at <i>t</i> ≈ 5 s

Mark Scheme

June	201	1
------	-----	---

Question	Expected Answers	Marks	Additional guidance
(iii)	$\frac{\frac{1}{2} \times 4.5^{2} \times 150 \times 10^{-6} \text{ and } \frac{1}{2} \times 1.5^{2} \times 450 \times 10^{-6}}{0.5 \times 4.5^{2} \times 150 \times 10^{-6}}$ ratio = $\frac{0.5 \times 4.5^{2} \times 150 \times 10^{-6}}{0.5 \times 1.5^{2} \times 450 \times 10^{-6}}$ ratio = 3 Or $\frac{\frac{1}{2} Q^{2}/C_{150} \text{ and } \frac{1}{2} Q^{2}/C_{450}}{0}$ ratio = C_{450} / C_{150} ratio = 3	C1 A1 C1 A1	Allow: with or without the 10 ⁻⁶ Possible e.c.f. from (b)(i) and (b)(ii) Allow: full credit for correct use of either ½QV or ½ Q ² /C
(iv)	The ratio remains constant The charge / Q is the same for both capacitors	B1 B1	
	Total	13	

June 2	201	1
--------	-----	---

Que	estior	1	Expected Answers	Marks	Additional guidance	
3	(a)	(a) (Electric field strength is the) force <u>per</u> (unit positive) charge		B1	Allow: $E = F / Q$, F is the force on a (positive) charge Q	
	(b)		Parallel and equally spaced lines at right angles to plates	B1		
			Correct <u>upward</u> direction of field shown on at least one field line	B1		
	(c)	(i)	An arrow vertically downwards at P	B1		
		(ii)	$E = \frac{3400}{0.050} \text{ or } E = 6.8 \times 10^{4} \text{ (V m}^{-1)}$ $a = \frac{EQ}{m}$ $a = \frac{6.8 \times 10^{4} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \text{ or } a = \frac{1.09 \times 10^{-14}}{9.11 \times 10^{-31}}$ acceleration = 1.19 × 10 ¹⁶ (m s ⁻²) or 1.2 × 10 ¹⁶ (m s ⁻²)	C1 C1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below $E = \frac{3400}{0.050 \times 10^{-2}} \text{or} E = 6.8 \times 10^{6} \text{ (V m}^{-1}) \text{C1}$ $a = \frac{EQ}{m}$ $a = \frac{6.8 \times 10^{6} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \qquad \text{C1}$ acceleration = 1.19 × 10 ¹⁸ (m s ⁻²) A0	
		(iii)	$t = \frac{0.04}{4.0 \times 10^7}$ time = 1.0 × 10 ⁻⁹ (s)	B1	Allow: 1 × 10 ⁻⁹ (s) or 10 ⁻⁹ (s)	
		(iv)	initial vertical velocity = 0, final vertical velocity = at vertical velocity = $1.2 \times 10^{16} \times 1.0 \times 10^{-9}$ (Allow: $1 \times 10^{16} \times 1.0 \times 10^{-9}$) vertical velocity = 1.2×10^7 (m s ⁻¹)	M1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below vertical velocity = $1.2 \times 10^{18} \times 1.0 \times 10^{-9}$ M1 vertical velocity = 1.2×10^9 (m s ⁻¹)A0	

Mark Scheme

Question	Expected Answers	Marks	Additional guidance
(v)	$v^{2} = (4.0 \times 10^{7})^{2} + (1.2 \times 10^{7})^{2}$ velocity = 4.2 × 10 ⁷ (m s ⁻¹) Or $v^{2} = (4.0 \times 10^{7})^{2} + (1 \times 10^{7})^{2}$ velocity = 4.1 × 10 ⁷ (m s ⁻¹)	C1 A1 C1 A1	Possible ecf from (iv)
(vi)	KE = $\frac{1}{2} mv^2$ KE = $0.5 \times 9.11 \times 10^{-31} \times (4.2 \times 10^7)^2$ kinetic energy = 8.04×10^{-16} (J) or 8.0×10^{-16} (J)	C1 A1	Possible ecf from (v) Allow: 1 sf answer if the answer comes out as 8.0×10^{-16} (J)
(vii)	Graph starts at non-zero value for E_k Between 0 and 0.08 (m) the graph has increasing gradient	B1 B1	
	Horizontal line after 0.080 (m)	B1	Note: The E_k value for the horizontal line > E_k value at $x = 0$
	Total	15	

ΡN	1T

Question	Expected Answers	Marks	Additional guidance
4 (a)	$E = \frac{Q}{4\pi\varepsilon_0 r^2}$ $\frac{(-)4.0 \times 10^{-9}}{4\pi\varepsilon_0 \times (1.75 \times 10^{-2})^2} \text{ and } \frac{5.0 \times 10^{-9}}{4\pi\varepsilon_0 \times (1.75 \times 10^{-2})^2}$ $E_{\rm B} = 1.17 \times 10^5 (\rm N \ C^{-1}) \text{ and } E_{\rm A} = 1.47 \times 10^5 (\rm N \ C^{-1})$	C1 C1	Ignore signs
	field strength = $(1.17 + 1.47) \times 10^5$ (N C ⁻¹) field strength = 2.64×10^5 (N C ⁻¹) or 2.6×10^5 (N C ⁻¹)	A1	Allow: 2 marks for $2.9(4) \times 10^4$ (N C ⁻¹) when the fields are subtracted Allow: 2 marks for 6.6×10^4 (N C ⁻¹) for using 3.5×10^{-2} m
	direction = to the left / towards B	B1	
(b)	$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ force = $\frac{4.0 \times 10^{-9} \times 5.0 \times 10^{-9}}{4\pi \times 8.85 \times 10^{-12} \times (3.5 \times 10^{-2})^2}$ force = 1.47 × 10 ⁻⁴ (N)	C1 C1 A0	Ignore signs Allow: ε_0 in the equation
(c)	(weight =) $4.5 \times 10^{-5} \times 9.81$ or (weight =) $4.4(1) \times 10^{-4}$ (N) $\tan \theta = \frac{1.5 \times 10^{-4}}{4.41 \times 10^{-4}}$ angle = 18.8 (°) or 19 (°) (Allow: Full credit when angle is determined using a scale diagram)	C1 C1 A1	Allow: weight = $4.5 \times 10^{-5} \times g$ Note: Using force = 1.47×10^{-4} (N) gives an angle of 18.4° ; hence allow 18° Allow: 2 marks for $\theta = 71^{\circ}$; this is the complementary angle Allow: 1 mark for ' $\tan \theta = \frac{1.5 \times 10^{-4}}{4.5 \times 10^{-5}}, \theta = 73^{\circ}$ ' when mass is used instead of weight.
	Total	9	

Question			Expected Answers	Marks	Additional guidance
5	(a)		Down(wards)	B1	Note: Can be on Fig. 5.1
	(b)		(Fleming's) left-hand rule	B1	Allow: Thumb in direction of force, first finger in direction of (magnetic) field and second finger in direction of (conventional) current
	(c)	(i)	force = BIL = 0.080 × 4.0 × 5.0 × 10 ⁻² force = 0.016 (N)	B1	
		(ii)	reading = 2.500 - 0.016 reading = 2.484 (N)	B1	
			The force on <u>core/magnets</u> is up(wards)	B1	
			(According to Newton's third law) the forces (on the rod and steel core/magnets) are equal <u>and</u> opposite	B1	Allow: 'up and down' as equivalent to 'opposite'
	(d)		Resistance increases by a factor of 4	C1	
			Current decreases by a factor of 4	C1	
			The force decreases by a factor of 4		
			force = 0.004 (N)	A1	Possible e.c.f. from (c)(i) Note: force = (c)(i)/4 can score full marks Special case: Allow 1 mark for (resistance doubles, current is halved, hence) force = 0.008 (N)
			Total	9	

PMT

uestion	Expected Answers	Marks	Additional guidance
(a)	 Any four from 1 to 5: 1. Most of the alpha particles went straight through (some deviated through small angles) 2. Hence most of the atom is empty space 3. Some / a very small number of alpha particles were scattered / repelled through large angles / angles more than 90° 4. This showed the existence of (a tiny) positive nucleus 5. The size of the nucleus is about 10⁻¹⁴ m 	B1×4	Must use ticks on Scoris to show where the marks are awarded Allow: 10 ⁻¹⁵ m
	QWC: Award a mark for one conclusion correctly linked to an observation	B1	
(b)	Any <u>five</u> from: Gravitational (force) This force is attractive	M1	Allow: gravity
	AND is long-ranged / obeys ' $1/r^2$ relationship'	A1	Note : Do not allow 'inverse square law'; allow 'inverse square law with distance'
	Strong (nuclear force/interaction) This force is attractive (at larger distances) or repulsive at short distances	M1	
	AND is short-ranged / $\sim 10^{-14}$ m	A1	
	Electrostatic / electrical (force) / coulomb (force) This force is repulsive between protons / zero between neutrons / zero between protons and neutrons	M1	Allow: Electromagnetic (interaction/force)
	AND is long-ranged / obeys ' $1/r^2$ relationship'	A1	

PMT

Mark Scheme

June	201	1
------	-----	---

Question	Expected Answers		Additional guidance	
(c) (i	mass = $235 \times 1.7 \times 10^{-27}$ (= 3.995×10^{-25} kg) volume = $\frac{4}{3}\pi \times (8.8 \times 10^{-15})^3$ (= 2.855×10^{-42} m ³)	C1 C1	Allow: 1.66×10^{-27} kg for mass of nucleon	
	density = mass/volume density = 1.4×10^{17} (kg m ⁻³)	A1	Allow: 10^{17} (kg m ⁻³) for this estimation question Note: Omitting 235 gives 6.0×10^{14} (kg m ⁻³), allow 2 mark Allow: 1 mark if 92 or 143 is used to determine the mass of the nucleus; this gives a density value of 5.5×10^{16} (kg m ⁻³) and 8.5×10^{16} (kg m ⁻³) respectively	
(i	 The nucleons / neutrons and protons are packed together with little or no empty space (AW) 	B1		
	Total	14		

Question		1	Expected Answers		Additional guidance
7	(a)		The critical density is the density for which the universe will expand towards a (finite) limit or rate of expansion tends to zero / which will result in a <u>flat</u> universe	B1	Not: critical density is given by $\frac{3H_0^2}{8\pi G}$
	(b)		Hubble constant = $\frac{65 \times 10^{3}}{10^{6} \times 3.1 \times 10^{16}}$ Hubble constant = 2.1 × 10 ⁻¹⁸ s ⁻¹ critical density = $\frac{3H_{0}^{2}}{8\pi G}$ critical density = $\frac{3 \times (2.1 \times 10^{-18})^{2}}{8\pi \times 6.67 \times 10^{-11}}$ critical density = 7.9 × 10 ⁻²⁷ (kg m ⁻³)	B1 C1 A1	Possible e.c.f. from value of Hubble constant within this calculation
	(c)	(i)	open: (density of universe < critical density hence) the universe will expand forever closed: (density of universe > critical density hence) the universe will (eventually stop expanding and then) contract / big crunch flat: (density of universe = critical density hence) the universe will expand towards a (finite) limit / rate of expansion tends to zero	B1 B1 B1	Allow: 'universe continues to expand' Not: 'The universe stops expanding' Special case: Award 1 mark for correct sketches if no explanation is given for open, closed and flat
		(ii)	Any <u>one</u> from: Existence of dark matter / black holes / neutrinos / dark energy / H_0 is not known accurately	B1	
			Total	8	

Question		Expected Answers		Additional guidance	
8	(a)	Less chance of infection	B1		
	(b)	Any <u>two</u> from:			
		 Tracer is injected into the body / placed inside the body / circulates the body Tracer is absorbed by organ / shows blockage Beta detector / gamma camera (is used to detect ra- diation from the body) 	B1×2	Note: No marks for ingesting substances (e.g barium)	
	(c)	 Any <u>five</u> from: 1. A positron / beta-plus emitting tracer / source is used 2. The positron annihilates with an electron (inside the patient) 3. This produces <u>two</u> gamma photons 4. The photons travels in opposite directions 5. The patient is surrounded by a ring of gamma detectors 6. The arrival times of the photons / delay time indicates location (of tumour inside the body) 7. A 3-D image is created (by the computer connected to the detectors) 	B1×5		
		Total	8		

Question	Expected Answers	Marks	Additional guidance	
9 (a)	 Any <u>three</u> from 1 to 4: 1. A (piezoelectric) crystal / transducer is used to send <u>pulse</u>(s) of ultrasound (into the patient) 2. Wave / ultrasound / pulse / signal is <u>reflected</u> (at the boundary of tissue) 3. The (intensity of the) <u>reflected</u> signal depends on the acoustic impedances (at the boundary) 4. The (time of) delay is used to determine the depth / thickness 	B1×3	Must use ticks on Scoris to show where the marks are awarded Allow: $\frac{I_{(r)}}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$ without symbols defined for the 3 rd marking point Note: Do not allow marking points 2 or 3 for gel-skin interface	
	QWC: Award a mark for correct sequencing of the steps in the process	B1		
(b)	A-scan is one directional / B-scan involves different directions or angles / B-scan consists of many A-scans / B-scan produces 2-D or 3-D image	B1		
	Total	5		

Mark Scheme

Que	estion	Expected Answers	Marks	Additional guidance	
10	(a)	A neutron is absorbed by a (massive / uranium) nucleus The nucleus splits into two (smaller/daughter) nuclei and (one or more) neutrons	B1 B1		
	(b)	In a fission reaction there is a decreases in the mass	M1		
		(According to $\Delta E = \Delta mc^2$) mass is converted into energy	A1		
		Or			
		The (total) binding energy of the products / smaller nuclei is greater than the binding energy of the original nucleus	M1	Allow: The 'BE increases (in the reaction)'	
		The difference in the binding energies is released as energy	A1		
	(c)	Moderator: water / graphite / carbon	B1	Note: If boron is mentioned, then do not award this B1 mark	
		It slows down the (fast-moving) neutrons / reduces the (kinetic) energy of neutrons	B1	Allow: They become thermal neutrons	
		Slow-moving neutrons have greater chance of causing fission (than fast-moving neutrons)	B1		
		Total	7		

PMT

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Physics A

Advanced GCE

Unit G485: Fields, Particles and Frontiers of Physics

Mark Scheme for January 2012

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

January 2012

Annotations available in Scoris

Annotation	Meaning
1.1.)	Benefit of doubt given
[-[+]]]	Contradiction
×	Incorrect response
.{∦	Error carried forward
1	Follow through
[[77]	Not answered question
2.565	Benefit of doubt not given
11-ini	Power of 10 error
	Omission mark
1 3	Rounding error
81	Error in number of significant figures
	Correct response
AL	Arithmetic error
2	Wrong physics or equation

January 2012

Annotations in detailed mark scheme

Annotation	Meaning	
1	alternative and acceptable answers for the same marking point	
(1)	Separates marking points	
reject	Answers which are not worthy of credit	
not	Answers which are not worthy of credit	
IGNORE	Statements which are irrelevant	
ALLOW	Answers that can be accepted	
()	Words which are not essential to gain credit	
	Underlined words must be present in answer to score a mark	
ecf	Error carried forward	
AW	Alternative wording	
ORA	Or reverse argument	

January 2012

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or more significant figures.

(Significant figures are rigorously assessed in the practical skills.)

0	Question		Answers		Guidance	
1	(a)		electric field strength = force per unit (positive) charge	B1	Allow: force/charge Not: <i>F</i> /Q	
	(b)	(i)	E = V / d 3.0×10 ⁶ = V / 1.3×10 ⁻³	C1	Note: This mark is for correct substitution	
			V = 3900 (V)	A1	Allow : 1 mark if answer is 3.9×10^{n} (V), n \neq 3 – POT error	
		(ii)1	Q = It			
			$Q = 2.7 \times 10^{-9} \times 4.0 \times 10^{-2}$	C1	Note: This mark is for correct substitution	
			charge = 1.1×10^{-10} (C) or 1.08×10^{-10} (C)	A1		
		(ii)2	number = $1.08 \times 10^{-10} / 1.6 \times 10^{-19}$			
			number = 6.8×10^8 or 6.75×10^8	B1	Possible ecf from (b)(ii)1	
		(iii)	energy = VQ		Note: No credit for using 1/2 QV	
			energy = $3900 \times 1.08 \times 10^{-10}$	C1	Possible ecf from (b)(ii)1	
			energy = 4.2×10^{-7} (J)	A1		
			Total	8		

(Quest	ion	Answers	Marks	Guidance
2	(a)		torque = one of the forces \times <u>perpendicular</u> distance (between the forces)	B1	
	(b)	(i)	Into (plane of) paper	B1	Not: 'down'
		(ii)1	force = BIL = 0.060 × 0.03 × 0.015 force = 2.7 × 10 ⁻⁵ (N)	B1	
		(ii)2	torque = $2.7 \times 10^{-5} \times 0.015$	C1	Possible ecf from (b)(ii)1
			torque = 4.1×10^{-7} (N m) or 4.05×10^{-7} (N m)	A1	Do not allow 4.0×10^{-7} (N m) - rounding error
	(C)	(i)	F = BQv 2.0 × 10 ⁻¹³ = 0.14 × Q × 4.5 × 10 ⁶ charge = 3.2 × 10 ⁻¹⁹ (C) or 3.17 × 10 ⁻¹⁹ (C)	C1 A1	Allow: Any subject
		(ii)	$F = mv^{2} / r$ $2.0 \times 10^{-13} = \frac{2.7 \times 10^{-26} \times (4.5 \times 10^{6})^{2}}{r}$	C1 C1	Allow: Any subject
			radius = 2.7 (m) or 2.73 (m)	A1	
		(iii)	$BQv = mv^2/r$ Hence, radius \propto mass	B1 B1	Allow: $r \propto m$
			Total	12	

C	Questi	on	Answers	Marks	Guidance
3	(a)		magnetic flux = (magnetic) flux density \times (cross-sectional) area Idea of (magnetic) field normal to the plane of the area	M1 A1	Allow full credit for magnetic flux = BA , where B = magnetic flux density normal to area and A = (cross-sectional) area
	(b)	(i)	constant rate of change of (magnetic) flux / flux density	B1	Not: 'graph has constant gradient'
		(ii)	e.m.f. = rate of change of flux linkage e.m.f. = $\frac{1.4 \times 10^{-2} \times \pi \times (3.2 \times 10^{-2})^2 \times 180}{2.5}$ e.m.f. = 3.2×10^{-3} (V) or 3.24×10^{-3} (V)	C1 C1 A1	Allow: $E = \frac{\Delta N \phi}{\Delta t}$ Deduct 1 mark if <i>B</i> is misread from the graph and then ecf Allow: 2 marks for an answer 3.24×10^{n} (if n \neq -3) Allow: 2 marks for 1.78×10^{-5} (when 180 has been missed out)
	(c)	(i)	$P = VI$ current in secondary = 15/6 or 2.5 (A) primary voltage = $6.0 \times turn ratio = 6.0 \times 40 = 240$ (V) $V_p = 240$ (V) or $I_s = 2.5$ (A) primary current = $2.5/40$ or $15/240$ input current = 6.3×10^{-2} (A) or 6.25×10^{-2} (A)	C1 A1	The C1 mark is for either of these values
		(ii)	There is no change in <u>flux density</u> / (magnetic) <u>flux</u> / (magnetic) <u>flux</u> linkage	B1	Not: 'There is no change in the magnetic field'
			Total	9	

(Quest	tion	Answers	Marks	Guidance
4	(a)		capacitance = charge/p.d. or capacitance = charge per (unit) p.d.	B1	Allow: voltage instead of p.d. Note: Do not allow mixture of quantity and unit, e.g. 'charge per (unit) volt'
	(b)	(i)	$C_{\text{parallel}} = 240 \ (\mu\text{F})$ $C_{\text{T}} = (240 \times 120)/(240 + 120) \text{ or } C_{\text{T}} = (240^{-1} + 120^{-1})^{-1}$ total capacitance = 80 (μF)	C1 C1 A0	Allow :1 mark if C_{T} is not the subject, e.g: $\frac{1}{C_{\text{T}}} = \frac{1}{240} + \frac{1}{120}$
		(ii)	$E = \frac{1}{2}V^{2}C$ $E = \frac{1}{2} \times 6.0^{2} \times 80 \times 10^{-6}$ energy = 1.4 × 10 ⁻³ (J) or 1.44 × 10 ⁻³ (J)	C1 A1	Possible ecf Allow: 1 mark for an answer 1.44×10^{n} (n \neq -3)
		(iii)1	6.0/e = 2.2 (V) (as on graph) Or $6.0 \times 0.37 = 2.2$ (V) (as on graph) Or At 20 (s), $V = 2.2$ (V), 2.2/6.0 = 0.37 (or e^{-1})	B1	Allow : Graph reading within ± 0.2 V
		(iii)2	CR = 20 $R = \frac{20}{80 \times 10^{-6}}$ $R = 2.5 \times 10^{5} (\Omega)$	C1 A1	Allow: Follow through with CR value from (iii)1
			Total	8	

C	Questi	ion	Answers	Marks	Guidance	
5	(a)		Same charge / number of protons		Not: 'same chemical property'	
	(b)		strong (nuclear force / interaction) gravitational (force)	B1 B1	Allow: 'gravity'	
	(c)	(i)	¹⁵ ₇ N	B1		
		(ii)	$(u d d) \rightarrow (u u d)$	B1	Allow: One down quark becomes up quark or $d \rightarrow u$ (+ electron + antineutrino)	
	(d)	(i)	0.16 MeV = $0.16 \times 10^{6} \times 1.6 \times 10^{-19}$ $\frac{1}{2} \times 9.11 \times 10^{-31} \times v^{2} = 2.56 \times 10^{-14}$ speed = 2.4×10^{8} (m s ⁻¹) or 2.37×10^{8} (m s ⁻¹)	C1 A1	Allow : 1 mark for using 9.8 MeV; answer is equal to 1.86×10^9 (m s ⁻¹)	
		(ii)	The mass of the electron increases / greater than 'rest mass'	B1		
	(e)	(i)	$\lambda = 0.693/T$ $\lambda = 0.693/(5560 \times 3.16 \times 10^7)$ $\lambda = 3.9 \times 10^{-12} \text{ (s}^{-1} \text{ or } 3.94 \times 10^{-12} \text{ (s}^{-1})$	C1 A1	Allow : 1 mark for 1.25×10^{-4} (if 5560 y used)	
		(ii)	number = $\frac{1.0 \times 10^{-3}}{14} \times 6.02 \times 10^{23}$	M1	Note: This step must be seen to score 1 mark	
			14 number = 4.3×10^{19}	A0		
		(iii)	activity = λN			
			activity = $3.94 \times 10^{-12} \times 4.3 \times 10^{19}$	C1	Possible ecf from (e)(i) and (e)(ii)	
			activity = 1.7×10^8 (Bq) or 1.69×10^8 (Bq)	A1		

Question	Answers	Marks	Guidance
(f)	 Any three from: Plants / living things take in carbon(-dioxide) or plants / living things stop taking in carbon after death The ratio of carbon-14 to carbon-12 (nuclei) for the relic sample is determined The current ratio of carbon-14 to carbon-12 nuclei is determined 	B1×3	Must use ticks on Scoris to show where the marks are awarded
	4. The age of the relic is found using ' $x = x_0 e^{-\lambda t}$ ' Limitation: The ratio of carbon-14 to carbon-12 is assumed to be constant / count(-rate) from relic may be comparable to background count(-rate)	B1	Allow: Any other valid comment for the limitation
	Total	17	

(Quest	ion	Answers	Marks	Guidance
6	(a)		(Minimum) energy to separate (all) nucleons / protons <u>and</u> neutrons (of a nucleus)	M1 A1	Alternative: B.E. = mass defect $\times c^2$ M1 mass defect = mass of nucleons – mass of nucleus A1
	(b)	(i)	BE of 2 H = 2 × 1.8 × 10 ⁻¹³ (J) or BE of 4 He = 4 × 1.1 × 10 ⁻¹² (J)	C1	
			energy = $(4 \times 1.1 \times 10^{-12}) - 2 \times (2 \times 1.8 \times 10^{-13})$ energy = 3.68×10^{-12} (J) / 3.7×10^{-12} (J)	C1 A0	Note: Ignore signs
		(ii)1	total surface area = $4\pi \times (1.5 \times 10^{11})^2$ power = $1400 \times (2.83 \times 10^{23})$ power = 3.96×10^{26} (W) / 4.0×10^{26} (W)	C1 C1 A0	
		(ii)2	number = $4.0 \times 10^{26}/3.7 \times 10^{-12}$ number = 1.1×10^{38} (s ⁻¹) or 1.08×10^{38} (s ⁻¹)	C1 A1	Allow : 10 ³⁸ (s ⁻¹) because the question is about an estimate
			Total	8	

Question	n Answers	Marks	Guidance
7 (a)	 Any two from: 1. Electrons are accelerated through high voltage 2. (High speed) electron(s) hit metal 3. <u>kinetic</u> energy of electron(s) 'produces' X-ray (photons) 	B1×2	Allow: X-rays are produced by (large) deceleration of electrons
(b)	(i) Packet /quantum of (electromagnetic) energy	B1	Allow: 'particle of (electromagnetic) energy'
((ii) $E = hc/\lambda$ and X-rays have shorter wavelength Or E = hf and X-rays have higher frequency	B1	
(c)	(KE of electron =) $1.6 \times 10^{-19} \times 120 \times 10^{3}$ $eV = \frac{hc}{\lambda}$ $1.6 \times 10^{-19} \times 120 \times 10^{3} = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda}$ wavelength = 1.0×10^{-11} (m) or 1.04×10^{-11} (m)	C1 C1 A1	Allow: 2 marks for $1.0(4) \times 10^{-n}$ (m) (n \neq 11 - powers of ten error) Allow: 1×10^{-11} (m)
(d)	Compton (scattering) Incoming photon collides with an electron, the electron is ejected and the photon is scattered / has lower energy Or Pair production Incoming photon (disappears and) produces electron-positron pair	M1 M1 	Must use ticks on Scoris to show where the marks are awarded Allow: (Simple) scatter(ing) M1 The photon is absorbed and re-emitted without change in energy/wavelength/frequency A1
	Total	9	

(Quest	ion	Answers	Marks	Guidance
8	(a)		No entry into body / no cutting/incision of patient / no surgery Lower risk of infection / less trauma	B1 B1	
	(b)		Radioactive substance that is ingested / injected (into patient)	B1	
			Technetium(-99m) / lodine(-131) / fluorine(-18)	B1	Not: barium
	(c)		Collimator – gamma (ray photons) travel along the axis of lead tubes or allows parallel gamma (ray photons travel to the scintillator)	B1	Must use ticks on Scoris to show where the marks are awarded
			Having thin / long / narrow (lead) tubes makes the image sharper / less blurred (QWC mark)	B1	
			Scintillator – gamma ray <u>photon</u> produces <u>many/thousands</u> of <u>photons</u> of (visible) light	B1	
			Photomultiplier - An electrical pulse is / electrons are produced from the light (photons)	B1	
			Computer – Signals (from photomultiplier tubes) are used to produce an image	B1	
	(d)	(i)	$v = f\lambda$		
			$1500 = 2.0 \times 10^6 \times \lambda$	C1	
			wavelength = 7.5×10^{-4} (m)	A1	
		(ii)	Ultrasound is reflected by (moving) blood (cells)	B1	Must use ticks on Scoris to show where the marks are awarded
			The frequency / wavelength (of ultrasound) is changed (AW)	B1	Not: Doppler effect mentioned
			The <u>change</u> of frequency is related to speed of blood / <u>change</u> of wavelength is related to speed of blood / ' Δ frequency \propto speed of blood'	B1	
			Total	14	

(Quest	ion	Answers		Guidance	
9	(a)		 Any <u>four</u> from: (Sun / star formed from) dust cloud /nebula / (hydrogen) gas <u>Gravitational</u> collapse (AW) Temperature of (dust) cloud increases / KE (of cloud) increases / (cloud) heats up Fusion occurs (when temperature is about 10⁷ K) Protons / hydrogen nuclei combine to make helium (nuclei) Stable size star is produced when thermal / radiation pressure is equal to gravitational pressure 	B1× 4	Must use ticks on Scoris to show where the marks are awarded	
			Steps sequenced correctly – QWC mark	B1		
	(b)		 Any two from: 1. Very dense star 2. Hot star / high surface temperature / low luminosity 3. No fusion reactions take place / leaks away photons (from earlier fusion reactions) 4. Its collapse is prevented by Fermi pressure / mass less than 1.4 solar masses (AW) 	B1×2	Must use ticks on Scoris to show where the marks are awarded Not: small in size, but <u>allow</u> 'smaller than main sequence star / Sun'	
	(c)	(i)	Flat or universe will expand towards a (finite) limit or the rate of expansion will become/tend to zero	B1		
		(ii)	Hubble constant = 1/age $H_0 = 1/4.4 \times 10^{17} (= 2.273 \times 10^{-18} \text{ s}^{-1})$ density = $\frac{3H_0^2}{8\pi G}$	C1		
			density = $\frac{3H_0^2}{8\pi G} = \frac{3 \times (2.273 \times 10^{-18})^2}{8\pi \times 6.67 \times 10^{-11}}$ density = 9.2 × 10 ⁻²⁷ (kg m ⁻³) or 9.24 × 10 ⁻²⁷ (kg m ⁻³)	C1 A1	Allow: 2 marks for a bald 9.24×10^{-27} (kg m ⁻³) answer Note: This mark can only be scored if working is	
			density is about 10 ⁻²⁶ (kg m ⁻³)	AO	shown	

Question		Answers		Guidance	
	(iii)	number = $9.24 \times 10^{-27}/1.7 \times 10^{-27}$ number = 5.4 (Allow 5)	C1 A1	Possible ecf from (c)(ii) Allow: 2 marks for $(10^{-26}/1.7 \times 10^{-27} = 5.9 \text{ or } 6'$	
(d)		$\frac{1}{2}mv^{2} = \frac{3}{2}kT / \text{ speed } \propto \sqrt{T}$ ratio = $\sqrt{\frac{10^{8}}{2.7}}$ ratio = 6.1 × 10 ³ or 6.09 × 10 ³	C1 A1		
		Total	15		

PMT

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMERIDGE ASSESSMENT GROUP

Physics A

Advanced GCE

Unit G485: Fields, Particles and Frontiers of Physics

Mark Scheme for June 2012

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

PMT

June 2012

Annotations

Annotation Available in Scoris	Meaning
	Benefit of doubt given
GON	Contradiction
×	Incorrect response
	Error carried forward
	Follow through
(NAXA)	Not answered question
	Benefit of doubt not given
TOT	Power of 10 error
	Omission mark
	Rounding error or 'reading error'
	Error in number of significant figures
 Image: A start of the start of	Correct response
	Arithmetic error
?	Wrong physics or equation

Annotation Used in Mark Scheme	Meaning
1	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

Q2(d), Q6(b), Q7(d), Q8(a)(b), Q9(a)(b), Q10(c).

June 2012

Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.

Q	uesti	on	Answer	Marks	Guidance
1	(a)		(farad = 1) coulomb per (unit) volt	B1	Allow: C V ⁻¹
	(b)	(i)	1/C	B1	Allow: 'inverse of C'
		(ii)	work (done) / energy	B1	
	(C)		Diagram : All 3 capacitors connected in series $\frac{1}{C} = \frac{1}{100} + \frac{1}{200} + \frac{1}{500} / \frac{1}{C} = 1.7 \times 10^{-2}$	B1 C1	Note: Correct symbol must be used for capacitor and at least one of the capacitance values (without the unit) must be shown
			capacitance = 59 (μF)	A1	Allow: Answer to 1 sf Note: Answer to 3sf is 58.8 (μ F) Allow: 1.7 × 10 ⁻² (μ F) scores 1 mark from the C1A1
	(d)	(i)	$Q = 0.040 \times 60$ charge = 2.4 (C)	C1 A1	Allow : 1 mark for 2.4×10^{n} , n \neq 0 (POT error)
		(ii)	energy = $\frac{1}{2} \times \frac{2.4^2}{0.10}$ energy = 29 (J)	C1 A1	Possible ecf from (d)(i) Note: Answer to 3 sf is 28.8 (J) Allow full credit for correct use of $\frac{1}{2}$ VQ or $\frac{1}{2}$ V ² C; the final p.d is 24 (V)
			Total	10	

G	Questi	on	Answer	Marks	Guidance
2	(a)	(i)	Correct direction of force at A (and marked F)	B1	
		(ii)	The force is perpendicular to velocity / motion (hence no work done on the electron) or No (component of) acceleration / force in direction of velocity / motion (hence no work done on electron) or No distance moved in the direction of the force	B1	
	(b)		$F = \frac{mv^2}{r}$ force = $\frac{9.11 \times 10^{-31} \times (6.0 \times 10^7)^2}{0.24}$ force = 1.4×10^{-14} (N)	C1 A1	Note : Answer to 3sf is 1.37×10^{-14} (N) Allow : 1 mark for 1.4×10^{n} ; n \neq -14 (POT error)
	(c)		F = BQv 1.37 × 10 ⁻¹⁴ = B × 1.60 × 10 ⁻¹⁹ × 6.0 × 10 ⁷ B = 1.4 × 10 ⁻³ (T)	C1 A1	Possible ecf from (b) Note : Answer to 3 sf is 1.43×10^{-3} (T) for 1.37×10^{-14} (N) Note : Using 1.4×10^{-14} (N) gives 1.46×10^{-3} (T) Note : Using $B = mv / Qr$ gives 1.42×10^{-3} (T)
	(d)		Using $(E =) mc^2$ and $(E =) \frac{hc}{\lambda}$ (QWC) $2 \times mc^2 = 2 \times \frac{hc}{\lambda}$ or $mc^2 = \frac{hc}{\lambda}$ or $mc = \frac{h}{\lambda}$ Correct substitution (any subject) $\lambda = 2.4 \times 10^{-12}$ (m)	B1 C1 A1	Eg: $2 \times 9.11 \times 10^{-31} \times (3.0 \times 10^8)^2 = 2 \times \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{\lambda}$ Answer to 3 sf is 2.43×10^{-12} (m) Allow: 1 mark for 1.21×10^{-12} (m) or 4.86×10^{-12} (m) for the C1A1 marks
			Total	9	

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(i)	$f = \frac{1}{T} = \frac{1}{10 \times 10^{-3}}$ frequency = 100 (Hz)	B1	
		(ii)	$2.0 \times 10^{-2} = B \times 1.6 \times 10^{-3} \times 400$	C1	
			$B = \frac{2.0 \times 10^{-2}}{1.6 \times 10^{-3} \times 400}$	C1	
			$B = 3.1 \times 10^{-2} (T)$	A1	Allow: 2 mark for 3.1×10^{n} ; n \neq -2 (POT error) Answer to 3 sf is 3.13×10^{-2} (T) Special case: 12.5 scores 1 mark; number of turns omitted
		(iii)	(e.m.f. = -) rate of change of flux <u>linkage</u>	B1	Allow: $E = (-) \frac{\Delta(N\phi)}{\Delta t}$ or (e.m.f. =) gradient
			<u>Tangent</u> drawn on Fig. 3.1 at 2.5 (ms) or 7.5 (ms) or 12.5 (ms)	B1	
			Values substituted to determine the gradient. The gradient must be 12.5 \pm 1.0 (V)	B1	Alternative:maximum e.m.f. = $2\pi f \times$ maximum flux linkageC1maximum e.m.f. = $2\pi \times 100 \times 2 \times 10^{-2}$ C1maximum e.m.f. = 12.6 (V) or 4π (V)A1
	(b)		$P = \frac{V^2}{R}$		
			$P = \frac{12^2}{150}$	C1	Possible ecf from (a)(iii)
			power = 0.96 (W)	A1	
			Total	9	

June	2012	
------	------	--

Question	Answer	Marks	Guidance
4 (a)	 Any two from: 1. There is a repulsive (electrical) force (between the gold nucleus and the alpha particle) 2. Momentum is conserved (because there are no external forces) / initial momentum of alpha particle = final momentum of gold nucleus (because there are no external forces) 3. KE of alpha particle transformed into (electrical) PE 	B1×2	Allow : (The gold nucleus and alpha particle experience) forces in opposite directions
(b)	Correct directions of field shown on lines from A and B Correct curved field lines from A and B	B1 B1	
(c)	$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ $Q = 79e \text{ and } q = 2e$ force = $\frac{79 \times 2 \times (1.60 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times (6.0 \times 10^{-14})^2}$ force = 10.1 (N)	C1 C1 C1 A0	All values must be substituted for this mark
(d)	Correctly shaped curve with <i>F</i> decreasing as <i>r</i> increases Value of <i>F</i> is between 2 to 3 (N) at $r = 12 \times 10^{-14}$ m	M1 A1	Note : $F \propto 1/r^2$, hence <i>F</i> should be about 2.5 (N)
	Total	9	

G485

Q	uesti	on	Answer	Marks	Guidance
5	(a)		no: of neutrons = 142	B1	
	(b)	(i)	(5.6 MeV =) $5.6 \times \frac{10^6}{10^{-13}} \times \frac{1.6 \times 10^{-19}}{1.6 \times 10^{-19}}$ energy = 8.96×10^{-13} (J)	M1 A0	Allow : $5.6 \times 1.6 \times 10^{-13}$
		(ii)	$\frac{1}{2} \times 6.65 \times 10^{-27} \times v^2 = 8.96 \times 10^{-13}$ $v = \sqrt{\frac{2 \times 8.96 \times 10^{-13}}{6.65 \times 10^{-27}}}$ speed = 1.6 × 10 ⁷ (m s ⁻¹)	C1 A1	Answer to 3 sf is 1.64×10^7 (m s ⁻¹) Note : The answer is 1.65×10^7 (m s ⁻¹) if 9×10^{-13} (J) is used
	(C)	(i)	activity = $\frac{62}{8.96 \times 10^{-13}}$ activity = 6.92×10^{13} (Bq)	C1 A0	Allow: activity = $\frac{62}{9 \times 10^{-13}}$ (= 6.89 × 10 ¹³ Bq) Possible ecf from (b)(i)
		(ii)	$\lambda = \frac{0.693}{T}$ $\lambda = \frac{0.693}{88 \times 3.16 \times 10^{7}}$ decay constant = 2.49 × 10 ⁻¹⁰ (s ⁻¹) or 2.5 × 10 ⁻¹⁰ (s ⁻¹)	C1 A1	Note : $ln2 = 0.693$ Allow : 1 mark for using 88 years and getting an answer of 7.9×10^{-3}
		(iii)	1 $A = \lambda N$ $N = \frac{6.92 \times 10^{13}}{2.49 \times 10^{-10}}$ number =2.78 × 10 ²³ or 2.8 × 10 ²³ 2 mass = $\frac{2.78 \times 10^{23}}{6.02 \times 10^{23}} \times 0.24$ mass = 0.11 (kg)	C1 A1 B1	Possible ecf from (c)(ii) Note: $7 \times 10^{13}/2.5 \times 10^{-10} = 2.8 \times 10^{23}$ Possible ecf for mass from incorrect value for number of nuclei
			Total	10	

(Questi	on	Answer	Marks	Guidance
6	(a)		The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions	B1	Not : neutrons interact with uranium <u>atoms</u> / <u>molecules</u> / <u>particles</u>
	(b)		Fuel rod: Contain the <u>uranium</u> (nuclei) / fissile material	B1	Show annotation on Scoris Not 'contains fuel'
			Control rods: Absorb (some of the) neutrons	B1	
			<i>Controlled chain reaction</i> : The control rods are inserted into the reactor so as to allow (on average) one neutron from previous reaction to cause subsequent fission (AW)	B1	QWC mark
			Moderator : Slows down the (fast-moving) neutrons / lowers the KE of (fast moving) neutrons / makes the (fast moving) neutrons into thermal neutrons	B1	
			Slow moving neutrons have a greater chance of causing fission / of being absorbed (by U-235) / sustaining chain reaction	B1	Allow : Fast moving neutrons are captured (easily) by uranium-238 (nuclei leaving insufficient number of nuclei for fission / chain reaction) for the last B1 mark
	(c)	(i)	power = $3.0 \times 10^{9}/0.22$ power = 1.36×10^{10} (W) or 1.4×10^{10} (W) energy = $1.36 \times 10^{10} \times 8.64 \times 10^{4}$	B1	
		(ii)	energy = $1.36 \times 10^{10} \times 8.64 \times 10^{4}$ energy = 1.18×10^{15} (J) or 1.2×10^{15} (J)	B1	Possible ecf from (c)(i)
		(iii)	(number of reactions per day) = $\frac{1.18 \times 10^{15}}{3.2 \times 10^{-11}}$	C1	Possible ecf from (c)(ii)
			mass = $\frac{1.18 \times 10^{15}}{3.2 \times 10^{-11}} \times 3.9 \times 10^{-25}$		
			mass = 14.4 (kg) or 14 (kg)	A1	Note: Using 1.2×10^{15} (J) gives an answer of 14.6 (kg); allow 15 (kg)
	(d)		Nuclear waste is (radio)active for a long time (AW) Causes ionisation	B1 B1	Allow: 'Nuclear waste can have long half life'
			Total	12	

Ques	tion	Answer	Marks	Guidance
7 (a)		Any <u>two</u> from: (X-rays) are EM waves Travel at speed of light / $3 \times 10^8 \text{ ms}^{-1}$ (in a vacuum) Travel in a vacuum / empty space Transverse waves Can cause ionisation Have wavelength of about 10^{-10} m (X-rays are high energy) photons (AW)	B1×2	Allow : reference to diffraction / interference / refraction / reflection / polarisation for 1 mark
(b)		 (X-ray) <u>photon</u> interacts with an (orbital) <u>electron</u> The (scattered) photon has a longer wavelength / lower frequency / lower energy AND The electron is ejected (from the atom at high speed) 	B1 B1	Allow: 'X-rays' instead of 'photons' for the second B1 mark
(c)	(i)	Initial / original / incident <u>intensity</u>	B1	Allow: Initial / original / incident power per (unit) area
	(ii)	$0.5 = e^{-(3.3x)}$ ln(0.5) = -3.3x x = ln(0.5)/(-3.3) x = 0.21 (cm)	C1 C1 A1	Allow : $ln(2) = 3.3x$ Allow : 2 marks for 2.1×10^{n} ; $n \neq -1$ (POT error)
(d)		A contrast material has large attenuation coefficient / large atomic number / large Z (and hence easily absorbs X-rays) Idea of revealing tissue	B1 B1	
		Total	10	

Q	uesti	on	Answer	Marks	Guidance
8	(a)		 Any seven from: Protons / nuclei have spin / behave like (tiny) magnets Protons / nuclei precess about the magnetic field (provided by the strong electromagnet) Transmitting coils provide (pulses of) radio waves of frequency equal to the Larmor frequency The protons / nuclei absorb energy / radio waves / resonate and flip into a higher energy state When protons / nuclei flip back to a lower energy state they emit (photons of) radio waves The relaxation time (of the protons/nuclei) depends on the (surrounding) tissues The radio waves are picked up by the receiving coils The gradient coils alter the magnetic flux density (through the body) The Larmor frequency (of the protons / nuclei) varies through the body The computer (processes all the signals from the receiving coils and) generates the image(s) 	B1 × 7	Show annotation on Scoris Not: Atoms / particles for nuclei /protons. Allow: The protons / nuclei absorb energy / radio waves / resonate and get excited Allow: When protons / nuclei relax they emit (photons of) radio waves
	(b)		 Ay two from: 1. PET scan: uses radioactive substance / uses positron- emitting substance / uses F(-18) / mention of gamma rays / mention of gamma photons 2. PET scan reveal the 'function' of the brain (AW) 3. MRI scan show variation in tissues (in the brain) (AW) 	B1×2	Allow: MRI scan: no radioactive substance is required / mention of radio waves Allow: PET scans are used to diagnose dyslexia / Alzheimer (disease)
			Total	9	

Q	uesti	on	Answer	Marks	Guidance
9	(a)		 Any <u>four</u> from: 1. (Fusion is the) joining / fusing together of ('lighter') <u>nuclei</u> / <u>protons</u> (to make 'heavier' nuclei) 2. Mass decreases in the reaction and this is transformed into energy OR the products have greater binding energy 3. High temperatures / ~10⁷ K needed for fusion 	B1×4	Not : Atoms / particles for nuclei /protons.
			 High pressure / density (required in the core) The protons / nuclei repel (each other because of their positive charge) The strong (nuclear) force comes into play when the protons / nuclei are close to each other 		
	(b)		(When hydrogen / helium runs out) the outer layers of the star expands / a (super) red giant is formed	B1	
			The core (of the star) collapses (rapidly) / a <u>supernova</u> is formed	B1	
			(Depending on the initial mass of the star the remnant is either a) <u>neutron star</u> or a <u>black hole</u>	B1	
			Total	7	

Quest	ion	Answer	Marks	Guidance
10 (a)		$F = \frac{GMm}{r^2}$ force = $\frac{6.67 \times 10^{-11} \times (10^{41})^2}{(4 \times 10^{22})^2}$ force = 4.2 × 10 ²⁶ (N)	C1 C1 A1	Allow : 4×10^{26} (N) or 10^{26} since this is an estimation Allow : 2 marks for 4.2×10^{n} ; n $\neq 26$ (POT error)
(b)		 Allow any <u>one</u> from: The galaxies are receding / moving away from each other (because of the big bang) Other galaxies may be pulling them in opposite direction The acceleration is too small to collapse (other than over a very long period of time) 	B1	
(c)		 Any <u>six</u> from: 1. (At the start it was) very hot / extremely dense / singularity 2. All forces were unified 3. Expansion led to cooling 4. Quarks / leptons (soup) 5. More matter than antimatter 6. Quarks combine to form hadrons / protons / neutrons 7. Imbalance of neutrons and protons / (primordial) helium produced 8. Atoms formed 9. Idea of gravitational force responsible for formation of stars / galaxies 10. Temperature becomes 2.7 K / 3 K or (the universe is saturated with cosmic) microwave background radiation 	B1×6	Show annotation on Scoris
(d)	(i)	Dark lines / bands against a background of <u>continuous</u> <u>spectrum</u>	M1 A1	

G485

Question	Answer		Guidance
(ii)	$\frac{v}{c} = \frac{\Delta \lambda}{\lambda}$ speed = $\frac{86.6}{393.4} \times 3.0 \times 10^8$ (Any subject) speed = 6.6×10^7 (m s ⁻¹) or 66000 (km s ⁻¹) $v = H_0 d$ $66000 = 50 \times d$ distance = 1300 (Mpc)	C1 C1 A1	Allow: 1 mark for $\frac{86.6}{480.0} \times 3.0 \times 10^8 = 5.41 \times 10^7$ (m s ⁻¹) Allow: 2 marks for 1.3×10^n ; n ≠ 3 (POT error) Note: Answer is 1080 (Mpc) if 5.4×10^7 (m s ⁻¹) is used; this value will score 2 marks
	Total	15	

PMT

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT

GCE

Physics A

Advanced GCE

Unit G485: Fields, Particles and Frontiers of Physics

Mark Scheme for January 2013

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

The following annotations are available on the marking scheme:

/	=	alternative and acceptable answers for the same marking point
(1)	=	separates marking points
allow	=	answers that can be accepted
not	=	answers which are not worthy of credit
reject	=	answers which are not worthy of credit
ignore	=	statements which are irrelevant
()	=	words which are not essential to gain credit
	=	underlined words must be present in answer to score a mark
ecf	=	error carried forward
AW	=	alternative wording
ora	=	or reverse argument

The following annotations are available in SCORIS.

Annotation	Meaning
 Image: A start of the start of	correct response
×	incorrect response
THE .	arithmetic error
[805	benefit of the doubt (where professional judgement has been used)
NICO	benefit of the doubt <u>not</u> given
	error carried forward
	information omitted
CON	contradiction (in cases where candidates contradict themselves in the same response)

January 2013

Annotation	Meaning
1 1	rounding error
BF	error in the number of significant figures
POT	error in the power of 10 in a calculation
?	wrong physics or equation
MAA	not answered question
FI	follow through

Highlighting is also available to highlight any particular points on the script.

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: Q5(e), 6(d), 7(a), 8(a) and Q9(a)

January 2013

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures and rounding errors:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance. Penalise a rounding error once only in the entire paper.

G	Quest	ion	Answer	Marks	Guidance
1	(a)	(i)	Any <u>two</u> from: Correct direction of movement of electrons Electrons deposited on Y / removed from X An equal number of electrons removed and deposited on plates (AW)	B1 × 2	
		(ii)1	$Q = 40 \times 10^{-6} \times 100 \ (= 4.0 \times 10^{-3} \ \text{C})$	C1	
			$4.0 \times 10^{-3} = 1.6 \times C$	C1	
			$C = 2.5 \times 10^{-3}$ (F)	A1	Allow : 2 marks for 2.5×10^{n} (F), where $n \neq -3$ (POT error)
		(ii)2	Graph starts at <u>origin</u> and has positive gradient A straight line graph that passes between 1-2 V at 100 s	M1 A1	
	(b)	(i)	$CR = 4.7 \times 10^{-6} \times 220 \ (= 1.03 \times 10^{-3} \ \text{s})$	C1	
			$4.00 = 6.00e^{-\frac{t}{1.03 \times 10^{-3}}}$	C1	
			$t = -\ln(4.00/6.00) \times 1.03 \times 10^{-3}$		
			time = 4.2×10^{-4} (s)	A1	Note: Answer to 3 sf is 4.19×10^{-4} (s) Allow: 2 marks for $t = -lg(4.00/6.00) \times 1.03 \times 10^{-3} = 1.8 \times 10^{-4}$ s
		(ii)	speed = $\frac{0.100}{4.2 \times 10^{-4}}$ speed = 240 (m s ⁻¹)	B1	Possible ecf from (b)(i)
			Total	11	

C	Quest	tion	Answer	Marks	Guidance
2	(a)		force per unit (positive) charge	B1	Allow : $E = \frac{F}{Q}$, where F = force on (a positive) charge Q
	(b)	(i)	The direction is different (AW)	B1	
		(ii)	$E \propto 1/r^2$ or distance is doubled $\therefore E$ decreases by a factor of 4	C1	Not: $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ on its own
			electric field strength = 2.0×10^5 (N C ⁻¹)	A1	Allow 1 sf answer
	(c)	(i)	$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$	C1	
			$F_{\rm E} = \frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{4\pi\varepsilon_0 \times (5.0 \times 10^{-11})^2}$	C1	
			$F_{\rm E} = \frac{4\pi\varepsilon_0 \times (5.0 \times 10^{-11})^2}{4\pi\varepsilon_0 \times (5.0 \times 10^{-11})^2}$ $F_{\rm E} = 9.2 \times 10^{-8} ({\rm N})$	A1	Allow : 1 mark if $Q = q = 1$ giving an answer of 3.6×10^{30} (N)
		(ii)	$F_{\rm G} = \frac{6.67 \times 10^{-11} \times 1.67 \times 10^{-27} \times 9.11 \times 10^{-31}}{(5.0 \times 10^{-11})^2}$	C1	
			$F_{\rm G} = \frac{(5.0 \times 10^{-11})^2}{(F_{\rm G} = 4.06 \times 10^{-47} \text{ (N)})^2}$		Note : Deduct 1 mark if mass of two electrons or two protons is used, then ecf
			ratio = $9.2 \times 10^{-8}/4.06 \times 10^{-47}$		
			ratio = 2.3×10^{39}	A1	Possible ecf from (c)(i)
		(iii)1	wavelength = 2.0×10^{-10} (m) $\lambda = h / mv$	C1	
			$p = \frac{6.63 \times 10^{-34}}{2.0 \times 10^{-10}}$	C1	Possible ecf for incorrect wavelength
			$p = 3.3 \times 10^{-24} \text{ (kg m s}^{-1}\text{)}$	A1	Note: Answer to 3 sf is 3.32×10^{-24} (kg m s ⁻¹) Allow: 1 sf answer

Question	Answer	Marks	Guidance
(iii)2			Possible ecf from (iii)1
	$v = \frac{3.32 \times 10^{-24}}{9.11 \times 10^{-31}} $ (= 3.64 × 10 ⁶ m s ⁻¹)	C1	Note: Deduct 1 mark if mass of proton is used, then ecf
	$E_{\rm k} = \frac{1}{2} \times 9.11 \times 10^{-31} \times (3.64 \times 10^6)^2$	C1	
	$E_{\rm k} = 6.0 \times 10^{-18} ({\rm J})$	A1	Note : Answer to 3 sf is 6.05×10^{-18} (J) Allow : 1 sf answer
	or		
	$E_{\rm k} = \frac{1}{2} p^2 / m$ $E_{\rm k} = \frac{1}{2} \times (3.32 \times 10^{-24})^2 / 9.11 \times 10^{-31}$	C1	Note: Deduct 1 mark if mass of proton is used, then ecf
	$E_{\rm k} = \frac{1}{2} \times (3.32 \times 10^{-24})^2 / 9.11 \times 10^{-31}$	C1	
	$E_{\rm k} = 6.0 \times 10^{-18} ({\rm J})$	A1	
	Total	15	

C	uesti	ion	Answer	Marks	Guidance
3	(a)		(Fleming's) left-hand rule	B1	
	(b)		The force is at right angles to the velocity (hence no work is done on the ions) / no (component of) force in the direction of motion / no (component of) acceleration in the direction of motion (AW)	B1	Allow: 'force is right angles to the motion'
	(c)	(i)	$F = \frac{mv^{2}}{r}$ force = $\frac{1.2 \times 10^{-26} \times (4.0 \times 10^{5})^{2}}{0.15}$	C1	
			force = $\frac{0.15}{1.3 \times 10^{-14}}$ (N)	A1	Note : Answer to 3 sf is 1.28×10^{-14} (N)
		(ii)	F = BQv 1.28 × 10 ⁻¹⁴ = B × 1.6 × 10 ⁻¹⁹ × 4.0 × 10 ⁵	C1	
			<i>B</i> = 0.20 (T)	A1	Possible ecf from (c)(i) Allow: 1 sf answer of 0.2 (T)
		(iii)	number per second = $\frac{4.8 \times 10^{-9}}{1.6 \times 10^{-19}}$	C1	
			number per second = $3.0 \times 10^{10} (s^{-1})$	A1	Allow : 1 sf answer of 3×10^{10} (s ⁻¹)
	(d)		(height is smaller) hence less abundance (than lithium-7)	B1	Allow: fewer / less (than lithium-7)
			position suggests that the ions are less massive / lighter fewer neutrons (than lithium-7)	B1	
			Total	10	

Q	luesti	ion	Answer	Marks	Guidance
4	(a)	(i)	momentum / mass-energy / charge / proton number / baryon number / nucleon number	B1	Not: 'energy' on its own
		(ii)	Some basic labelling of neutron(s), Xe and Sr	B1	
			Correct extension of diagram showing at least one of the neutrons interacting with <u>U-235</u> nucleus and producing neutron(s) and 'fragments'	B1	
	(b)	(i)	initial $m = 6.686 \times 10^{-27}$ (kg) or final $m = 6.681 \times 10^{-27}$ (kg)		
			or $\Delta m = 0.005 \times 10^{-27}$ (kg)	C1	
			$\Delta E = 0.005 \times 10^{-27} \times (3.0 \times 10^8)^2$	C1	
			energy = 4.5×10^{-13} (J)	A1	
		(ii)	kinetic (energy)	B1	Not : heat / sound Allow : (gamma) photons / EM radiation
		(iii)	$KE = \frac{3}{2}kT$		
			$KE = \frac{3}{2} \times 1.38 \times 10^{-23} \times 10^{9}$	C1	
			$KE = 2.1 \times 10^{-14} (J)$	A1	Allow : 1 sf answer or 10^{-14} (J) because the temperature is given as 10^9 K
		(iv)	Some nuclei will have KE greater than the mean KE (and hence cause fusion) (AW)	B1	
			Total	10	

Q	uestion	Answer	Marks	Guidance
5	(a)	$\lambda = \frac{0.693}{6.6 \times 10^3}$ or $\lambda = \frac{\ln 2}{6.6 \times 10^3}$ decay constant = 1.1×10^{-4} (s ⁻¹)	C1 A1	Note : Answer to 3sf is 1.05×10^{-4} (s ⁻¹)
	(b)	$A = \lambda N$ $N = \frac{250 \times 10^{6}}{1.05 \times 10^{-4}}$ number = 2.38 × 10 ¹² or 2.4 × 10 ¹²	C1 A0	Possible ecf from (a) Allow full credit for bald 2.4×10^{12}
	(c)	mass of F-18 = $\frac{2.38 \times 10^{12}}{6.02 \times 10^{23}} \times 0.018$ (= 7.116 × 10 ⁻¹⁴ kg) mass of FDG= 7.116×10 ⁻¹⁴ / 0.099 mass of FDG = 7.2 × 10 ⁻¹³ (kg)	C1 C1 A1	Possible ecf from (b) Allow full credit for using 2×10^{12} ; answer is 6.04×10^{-13} (kg)
	(d)	$A = 250 \times e^{-(1.05 \times 10^{-4} \times 20 \times 60)}$ activity = 220 (MBq)	C1 A1	Possible ecf from (a) Allow: 1 mark for 249 (MBq); factor of 60 omitted
	(e)	 (FDG/positron-emitting substance is injected into the patient) Any three from: Annihilation of electron and positron Positron-electron annihilation produces two gamma photons The gamma photons travels in opposite directions The patient is surrounded by (a ring of) gamma detectors A 3-D image is created (using the detector-signals with the aid of computer software) QWC: The arrival times / delay times of the photons (at diametrically opposite detectors) are used to pinpoint areas of increased activity (AW) 	B1 × 3	Allow: rays / waves instead of photons in 2 and 3
		Total	12	

Q	uesti	on	Answer	Marks	Guidance
6	(a)		(Fast-moving) electrons hit a metal / an anode The kinetic energy of the electrons is transferred into X- rays / photons / EM waves	B1 B1	Allow: (X-rays are produced by large) deceleration of electrons
	(b)		An X-ray photon interacts an electron (within the atom) The electron is ejected and the energy / frequency of the (scattered) photon is reduced	B1 B1	Allow : The electron is ejected and the wavelength of the (scattered) photon is increased
	(c)	(i)	$I = I_0 e^{-\mu x}$ I = 3.0×10 ⁹ × e ^{-(6.5×1.7)} intensity = 4.8 × 10 ⁴ (W m ⁻²)	C1 C1 A0	
		(ii)	power of beam = $4.8 \times 10^4 \times 5.0 \times 10^{-6}$ (= 0.24 W) power absorbed by tumour = 0.24/10 = 0.024 (W) time = $200/0.024$ time = 8.3×10^3 (s)	C1 C1 A1	Possible ecf from (c)(i) Allow: 2 marks for 8.3×10^2 (s) if 10% is omitted Note: Using 5×10^4 (W m ⁻²) gives an answer of 8000 (s)
	(d)		 X-ray beam passes through the patient at different angles / X-ray tube rotates around the patient A <u>thin</u> fan-shaped beam is used (AW) Images of 'slices' through the patient (in one plane are produced with the help of computer software) X-ray tube / detectors are moved along (the patient for the next slice through the patient) Advantage: 3D image / better contrast between different (soft) tissues 	B1 B1 B1 B1 B1	
			Total	14	

Q	uesti	on	Answer	Marks	Guidance
7	(a)		 Any <u>six from:</u> Protons / nuclei have spin or they behave like (tiny) magnets Protons precess around the magnetic field (provided by the strong electromagnet) The frequency of precession is known as the <i>Larmor frequency</i> (Transmitting) coils provide (pulses of) radio waves (of frequency equal to the Larmor frequency) The protons absorb energy (from the radio waves) / resonate and enter into a high energy state (AW) When protons return back to their low energy state and they emit (photons of) radio waves The <i>relaxation time</i> is the (average) time taken for the protons to return back to their normal / low energy state The relaxation time depends on the tissues (A computer processes all the signals from the receiving coils and with the help of computer software generates a 3D image) 	B1 × 6	Not: Atoms / particles Note: Must have reference to radio (waves) in 4 and 6 Allow 'excited' for 'high-energy state' Allow: Relaxing protons emit radio waves
	(b)		Disadvantage: Patient with metallic objects cannot be scanned / patient has to remain still (for a long time) / confined space / difficult for patient suffering from claustrophobia / or another suitable suggestion Advantage: Non-ionising /non invasive / better contrast (between soft tissues) / or another suitable suggestion	B1 B1	Not '3 D image' because it is given in (a)
			Total	8	

Mark Scheme

Q	uesti	ion	Answer	Marks	Guidance
8	(a)		 Any <u>three</u> from: (Interstellar dust and gas) cloud is drawn together by gravitational force / gravity Loss in (gravitational) PE / KE increases / temperature increases Fusion (of protons / hydrogen nuclei) takes place Energy is released in fusion reactions A stable star is formed when gravitational pressure is equal to internal / gas / radiation pressure QWC: The steps in the process are correctly sequenced 	B1 × 3 B1	Allow: 'gravitational collapse'
	(b)	(i) (ii)	 Any two from: (extremely) dense / (very) hot / low luminosity no fusion reactions occur it is a remnant of a low-mass star correct reference to Fermi pressure / electron degeneracy / Chandrasekhar's limit Red giant identified 	B1 × 2	
			(It is cooler but has) large <u>surface</u> area (and therefore radiates large amounts of energy)	B1	
			Total	8	

C	Questi	ion	Answer	Marks	Guidance
9	(a)		The night sky should be bright / have uniform brightness (but it is not)	B1	
			The line of sight ends on (the surface of a star) or 'number of stars $\propto r^2$ and intensity $\propto 1/r^2$ '	B1	
			Any <u>two</u> assumptions about the Universe: Infinite / uniformly distributed matter or stars throughout / static / infinite age	B1	
	(b)		(recessional) speed of <u>galaxy</u> \propto its distance (from the	B1	Allow: $v = H_0 x$, $v =$ (recessional) speed of galaxy, $x =$
			Earth) The universe is finite / it is expanding / it has a beginning / visible light is red-shifted (because of expansion of space) (AW)	B1	distance and H_0 is Hubble constant / a constant
	(c)	(i)	$v = H_0 x$		
			$3.4 \times 10^7 = H_0 \times 1.4 \times 10^{25}$	C1	
			$H_0 = 2.4 \times 10^{-18}$	A1	
			unit: s ⁻¹	B1	Note : This is an independent mark Note : Allow full credit for an Hubble constant of 75 with unit km s ⁻¹ Mpc ⁻¹
		(ii)1	age = $\frac{1}{2.4 \times 10^{-18}}$	C1	Possible ecf from (i)
			age = 4.17×10^{17} (s) age = 1.3×10^{10} (years)	A1	
		(ii)2	distance = $4.17 \times 10^{17} \times 3.0 \times 10^{8}$ (= 1.25×10^{26} m)	C1	
			distance = $\frac{4.17 \times 10^{17} \times 3.0 \times 10^{8}}{3.1 \times 10^{16}}$		
			distance = 4.0×10^9 (pc)	A1	Possible ecf from (ii)1
			Total	12	

PMT

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 MAT OF THE CAMBRIDGE ASSESSMENT

GCE

Physics A

Advanced GCE

Unit G485: Fields, Particles and Frontiers of Physics

Mark Scheme for June 2013

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

The following annotations are available on SCORIS.

Annotation	Meaning
✓	correct response
×	incorrect response
AE	arithmetic error
BOD	benefit of the doubt (where professional judgement has been used)
NBOD	benefit of the doubt <u>not</u> given
ECF	error carried forward
^	information omitted
CON	contradiction (in cases where candidates contradict themselves in the same response)
RE	rounding error
SF	error in the number of significant figures
POT	error in the power of 10 in a calculation
?	wrong physics or equation
NAQ	not answered question
FT	follow through

The following annotations are available on the marking scheme:

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
(1)	separates marking points
allow	answers that can be accepted
not	answers which are not worthy of credit
reject	answers which are not worthy of credit
ignore	statements which are irrelevant
()	words which are not essential to gain credit
	underlined words must be present in answer to score a mark
ecf	error carried forward
AW	alternative wording
ora	or reverse argument

June 2013

Subject-specific Marking Instructions

One tick per mark. All questions must have appropriate annotation.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.
- C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures and rounding errors:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.

Penalise a rounding error once only in the entire paper.

Q	uesti	on	Answer	Marks	Guidance
1	(a)		Series branch: Using $(100^{-1} + 300^{-1})^{-1}$ and $C = 75 (\mu F)$ capacitance = 500 + 75 capacitance = 575 (μF)	C1 A1	Possible ecf, if capacitance of series branch is incorrect
	(b)	(i)	Time constant method: 37% of 6.0 V is 2.2 V. The time taken to reach 2.2 V is equal to the time constant		Note: Allow full credit for other correct methods
			time constant = $60 (s)$ / CR = $60 (s)$	C1	Allow : time constant in the range 58 s to 62 s Deduct 1 mark for misreading graph followed by ecf
			$500 \times 10^{-6} \times R = 60$ $R = \frac{60}{500 \times 10^{-6}}$	C1	
			500×10^{-6} resistance = $1.2 \times 10^{5} (\Omega)$	A1	Note : If <i>C</i> value from (a) is used, then deduct 1 mark followed by ecf
			Substitution method:		60
			Correct values for p.ds and <i>t</i> substituted into $V = V_0 e^{-\frac{t}{CR}}$	C1	Eg : $2.2 = 6.0e^{-\frac{60}{CR}}$ - values read to ± 1 small square
			Correct values substituted into $\ln(V/V_0) = -\frac{t}{CR}$	C1	Eg: $\ln(2.2/6.0) = -\frac{60}{500 \times 10^{-6} \times R}$
			resistance = $1.2 \times 10^5 (\Omega)$	A1	Note : If <i>C</i> value from (a) is used, then deduct 1 mark followed by ecf. Using 575 (μ F) gives 1.04 × 10 ⁵ (Ω)
		(ii)	Correct p.ds from graph: 6 (V) and 3.6 (V) $\frac{1}{2} \times 500 \times 10^{-6} \times 6.0^2$ or $\frac{1}{2} \times 500 \times 10^{-6} \times 3.6^2$	C1 C1	Allow <i>V</i> value to be in the range 3.5 V to 3.7 at 30s
			energy is 9.00×10^{-3} (J) and 3.24×10^{-3} (J)		
			energy lost = 5.76×10^{-3} (J) or 5.8×10^{-3} (J)	A1	Note : Do not penalise 10^{n} error from (b)(ii) again here Allow 1 mark for: $\frac{1}{2} \times 500 \times 10^{-6} \times (6.0 - 3.6)^{2} = 1.44 \times 10^{-3}$ (J)
					Note: Do not penalise use of 575 μF again. This gives a value of 6.62 $\times 10^{\text{-3}}$ (J)
			Total	8	

Q	uesti	on	Answer	Marks	Guidance
2	(a)		number = $\frac{2.8 \times 10^{-9}}{1.6 \times 10^{-19}}$ number = 1.75×10^{10} or 1.8×10^{10}	B1	Ignore a negative sign
	(b)		$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ $F = \frac{2.8 \times 10^{-9} \times 2.8 \times 10^{-9}}{4\pi \times 8.85 \times 10^{-12} \times (2.0 \times 10^{-2})^2}$ force = 1.76 × 10 ⁻⁴ (N) or 1.8 × 10 ⁻⁴ (N)	C1 A1	Note : No credit for using charge equal to <i>e</i>
	(c)	(i)	Tension and weight	B1	Allow: force provided by the <u>string</u> / force in the <u>string</u> instead of tension Not: 'gravity' for weight Allow: force due to gravity Allow: gravitational (force)
		(ii)	(weight =) $6.5 \times 10^{-5} \times g$	C1	Deduct 1 mark for the use of 10 (m s ⁻²) followed by ecf
			$\tan\theta = 1.76 \times 10^{-4}/6.38 \times 10^{-4}$	C1	Note that getting to this stage scores both C1 marks Possible ecf from (b)
			<i>θ</i> =15°	A1	Note: No marks if mass is used instead of the weight
			Or		
			Scale drawing of triangle of force θ in the range 13° to 18° θ in the range 14° to 16°	C1 A1 A1	
			Total	7	

G	luesti	on	Answer	Marks	Guidance
3	(a)		Arrow to the left	B1	
	(b)	(i)	1500 (eV)	B1	Note : 2.4×10^{-16} (J) on the answer line scores zero
		(ii)	(KE =) $1500 \times 1.6 \times 10^{-19}$ (= 2.4×10^{-16} J)	C1	Possible ecf from (b)(i)
			$2.4 \times 10^{-16} = \frac{1}{2} \times 9.11 \times 10^{-31} \times v^2$ (Allow any subject)	C1	
			$v = 2.3 \times 10^7 \text{ (m s}^{-1}\text{)}$	A1	Allow: 2 marks for 5.3×10^{14} (answer not square-rooted) Note: $v = \sqrt{\frac{2 \times 1500}{9.11 \times 10^{-31}}} = 5.74 \times 10^{16}$ (m s ⁻¹) does not score
	(c)	(i)	$F_{(E)} = Eq$ and $F_{(M)} = Bqv$		
			Eq = Bqv (This mark is for equating the two equations)	M1	Allow an equivalent approach
			(Hence) $v = \frac{E}{B}$	A1	Allow any subject
		(ii)	Force due to magnetic field > force due to electric field	B1	Allow: magnetic force > electric force or $F_{\rm M} > F_{\rm E}$ or $Bqv > Eq$ or magnetic force is bigger and electric force is the same
			Electrons drift 'downwards'	B1	Note: This mark can be scored on Fig. 3.2
			Total	9	

Q	uesti	on	Answer	Marks	Guidance
4	(a)		magnetic flux = magnetic flux density \times area <u>normal</u> to the field	B1	Allow : $\phi = BA$, with terms defined; $B =$ magnetic flux density or magnetic field strength and $A =$ area <u>normal</u> to the field Note : If angle is used in the definition then it must be defined
					correctly
	(b)	(i)	$R = \frac{1.7 \times 10^{-8} \times 130}{\pi \times (4.6 \times 10^{-4})^2}$ (Any subject)	C1	
			$R = 3.3(2) (\Omega)$	C1	
			current = $\frac{24}{3.32}$		Allow: Possible ecf if value for R is incorrect after attempted ρL
			current = 7.2 (A)	A1	use of the equation $R = \frac{\rho L}{\pi r^2}$.
		(ii)	e.m.f. = rate of change of magnetic flux linkage		
			(initial ϕ =) 0.090 × 1.3 × 10 ⁻³ or 1.17 × 10 ⁴	C1	Allow : (initial $N\phi$ =) 0.090 × 1.3 × 10 ⁻³ × 1100 or 0.129
			$150 = \frac{1100 \times 0.090 \times 1.3 \times 10^{-3}}{t}$ (Any subject)	C1	
			time = 8.6×10^{-4} (s)	A1	Allow : 2 marks for 7.8×10^{-7} (s) if 1100 turns omitted
			Total	7	

C	Quest	ion	Answer	Marks	Guidance
5	(a)	(i)	Any number in the range: 10^4 to 10^5	B1	
		(ii)1	$10^{-14} = \frac{h}{mv}$ momentum = $\frac{6.63 \times 10^{-34}}{10^{-14}}$ momentum = 6.6×10^{-20} (kg m s ⁻¹)	C1 A1	Allow 1 sf answer of 7×10^{-20} (kg m s ⁻¹)
		(ii)2	The mass of the electron is greater (than its rest mass / 9.11×10^{-31} kg)	B1	Allow : Dividing (momentum) by 9.11×10^{-31} (kg) would give a speed of 7.3×10^{10} (m s ⁻¹) which is greater than the speed of light / <i>c</i> (this is not possible) (AW)
	(b)	(i)	Different number of <u>neutrons</u>	B1	Not : different number of nucleons / different mass number / different A
		(ii)	uud	B1	
		(iii)	$u \rightarrow d$ + positron + neutrino	M1 A1	Allow: u u d \rightarrow u d d Allow: symbols for positron (e ⁺ / β^+ / $_{+1}^0$ e) and neutrino (v) Allow full marks for an answer in words Allow 1 mark for p \rightarrow n + e ⁺ + v
		(iv)	Any <u>two</u> from: charge or proton number / momentum / mass-energy / nucleon number / lepton number / strangeness / baryon number / spin	B1	Not : <u>mass</u> on its own or <u>energy</u> on its own, but allow mass <u>and</u> energy
		(v)	β^+ when there are fewer neutrons / β^+ for lighter nuclei or β^- when there are more neutrons / β^- for heavier nuclei	B1	Allow: Alternative correct answers in terms of ratio of protons to neutrons
			Total	10	

C	uestion	Answer	Marks	Guidance
6	(a)	Impossible to predict when a <u>nucleus</u> will decay or impossible to predict which <u>nucleus</u> will decay	B1	
	(b)	$N = N_0 e^{-\lambda t}$ ($\lambda =$) 0.693/7.1 ×10 ⁸ $\lambda = 9.76 \times 10^{-10} \text{ y}^{-1}$ 0.011 = $e^{-(9.76 \times 10^{-10} \times t)}$ (age =) $\frac{\ln(0.011)}{-9.76 \times 10^{-10}}$ age = 4.6 × 10 ⁹ (y)	C1 C1 A1	Alternatives: $N = N_{0}e^{-\lambda t}$ $(\lambda =) 0.693/[7.1 \times 10^{8} \times 3.16 \times 10^{7}] C1$ $\lambda = 3.089 \times 10^{-17} \text{ s}^{-1}$ $0.011 = e^{-(3.089 \times 10^{-17} \text{ s}^{-1})} C1$ $(age =) \frac{\ln(0.011)}{-3.089 \times 10^{-17}}$ $age = 1.46 \times 10^{17} (\text{s})$ $age = 4.6 \times 10^{9} (\text{y}) A1$ Or $0.011 = \frac{1}{2^{n}} C1$ $n = -\frac{\ln(0.011)}{\ln 2} \text{ or } n = 6.5 C1$ $age = 6.5 \times 7.1 \times 10^{8} (\text{y})$ $age = 4.6 \times 10^{9} (\text{y}) A1$
	(c) (i)	number in the range 50 to 70	B1	
	(ii)	Correct reference to binding energy. Eg: The BE per nucleon will decrease for fusion (which is impossible unless external energy is supplied) (AW)	B1	

Question	Answer	Marks	Guidance		
(iii)	(mass of nucleons =) $4 \times 1.673 \times 10^{-27} + 4 \times 1.675 \times 10^{-27}$ (Δm =) [$4 \times 1.673 \times 10^{-27} + 4 \times 1.675 \times 10^{-27}$] - 1.329 × 10 ⁻²⁶	C1 C1	Allow, due to misinterpretation of Data, Formulae an Relationship Booklet, the following (though incorrect)	:	
	(mass defect =) 1.020×10^{-28} (kg) BE = mass defect × c^2		(nucleon mass =) $8 \times 1.661 \times 10^{-27}$ (kg) (Δm =) [$8 \times 1.661 \times 10^{-27}$] - 1.329 × 10 ⁻²⁶ (kg) (BE =) (-) $2.0 \times 10^{-30} \times (3.0 \times 10^{8})^{2}$ (= 1.8 × 10 ⁻¹³ J) (BE per nucleon =) $1.8 \times 10^{-13}/8$		
	(BE =) $1.020 \times 10^{-28} \times (3.0 \times 10^{8})^{2}$ (= 9.180×10^{-12} J) (BE per nucleon) = $9.180 \times 10^{-12}/8$	C1	BE per nucleon = 2.25×10^{-14} (J)	A1	
	BE per nucleon =1.148 \times 10 ⁻¹² (J)	A1	Allow 2 sf or 3 sf answer		
	Total	10			

Question	Answer	Marks	Guidance
7 (a)	 Any <u>two</u> from: Can travel in a vacuum Travel at the speed of light / c / 3 × 10⁸ m s⁻¹ in <u>vacuum</u> No charge / no (rest) mass (Highly) ionising 	B1 × 2	Not: EM radiation / wave because not <i>particulate</i> nature Not: Short wavelength or high frequency Not: High energy photons Not: reflect / refract / diffract
(b)	$\frac{hc}{\lambda} \underbrace{\text{and } E = mc^2}_{\substack{\delta = 0.63 \times 10^{-34} \times 3.0 \times 10^8 \\ \lambda = 2 \times 9.11 \times 10^{-31} \times (3.0 \times 10^8)^2}_{\substack{\lambda = 0.23 \times 10^{-12} \\ \text{wavelength} = 1.2 \times 10^{-12} \text{ (m)}}$	C1 C1 A1	Allow: $\frac{hc}{\lambda}$ and 1.02 <u>MeV</u> or 0.51 <u>MeV</u> for this first C1 mark Allow: Correct use of mass = 0.00055 u Allow: 2 marks for 2.4×10^{-12} (m) for omitting factor of 2 Note: Using the de Broglie equation with $v = c$, also gives an answer of 2.4×10^{-12} (m); this scores zero – see below: $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.0 \times 10^8} = 2.4 \times 10^{-12}$ m scores zero
(C)	Barium / iodine (Contrast medium absorbs X-rays because it) has large attenuation coefficient / has large absorption coefficient / has large <i>Z</i> values Ideal for imaging the <u>outline</u> (of soft tissues)	B1 B1 B1	Not : X-rays are (easily) absorbed by the contrast material Allow : If there is a hole then the barium shows this up by flowing out / Barium is used to find blockage with explanation
	Total	8	

Question		Answer	Marks	Guidance
8	(a)	Rate of decay / disintegration of <u>nuclei</u> or Number of γ (photons) emitted per unit time	B1	The question has 500 Bq. Hence allow the following: Number of <u>nuclei</u> decaying per second / number of γ (photons) emitted per second Not : Rate of decay of atoms / molecules / particles
	(b)	(rate of energy =) $500 \times 10^6 \times 2.2 \times 10^{-14}$ rate of energy emission = 1.1×10^{-5} (J s ⁻¹)	C1 A1	
	(c)	Collimator / lead tubes and gamma (ray photons) travel along the axis of lead tubes (AW) Scintillator / Sodium lodide (crystal) and gamma ray / gamma photon produces (many) photons of (visible) light	B1 B1	Not 'it collimates' Allow : parallel rays / uni-directional rays travel along the lead tubes (AW)
		Photomultiplier (tubes) / photocathode and dynodes and (electrical) pulse / signal / electrons produced by photon(s) of visible light	B1	
		Computer <u>and</u> signals / pulses /electrons (from photomultiplier tubes) are used to generate an image	B1	Not 'information / data' in place of signals
		QWC: Quality of image improved by narrower / thinner / longer collimators OR longer scanning time	B1	
		Total	8	

Q	uestion	Answer	Marks	Guidance
9	(a)	Longitudinal (wave) Frequency (sound) ≥ 20 <u>kHz</u>	B1 B1	Allow: high frequency (sound) that cannot be heard Allow any value of frequency $\geq 20 \frac{\text{kHz}}{\text{Not}}$: It is non-ionising
	(b)	Emission: (Piezoelectric film / crystal connected to an) <u>alternating</u> e.m.f / p.d / current making it vibrate / contract and expand / resonate (and hence emits ultrasound) (AW) Reception: (Ultrasound makes the piezoelectric film /	B1 B1	Note : The alternating p.d. can be implied by the term <i>frequency</i> Not varying p.d.
		crystal) vibrate / contract and expand / resonate and this produces (alternating) e.m.f. / p.d / current (AW)		
	(c)	Without the gel, the ultrasound would be reflected (at the skin /air interface) or The gel allows (maximum) transmission of ultrasound (into the body) Gel and skin has similar acoustic impedance / <i>Z</i> (values)	B1 B1	Allow: Gel is used for impedance matching
		or There is a <u>large</u> difference between the Z (values) of air and skin		Allow. Och is used for impedance matering
	(d)	Transducer placed at an angle to the artery / arm	B1	
		Ultrasound (pulses) are reflected by (moving) blood (cells)	B1	
		The frequency / wavelength (of ultrasound) is changed	B1	Allow: The wavelength / frequency is Doppler shifted (AW)
		Change in frequency is related to the speed (of blood) or change in wavelength is related to the speed	B1	Allow: $\frac{\Delta f}{f} = \frac{2v\cos\theta}{c}$ where <i>c</i> is the speed of ultrasound and <i>v</i> is the speed of blood; no need to define the angle
		Total	10	

Question		on	Answer	Marks	Guidance
10	(a)		(distance =) $3.0 \times 10^8 \times 3.16 \times 10^7$ distance = 9.48×10^{15} (m) $\approx 9.5 \times 10^{15}$ (m)	B1	Allow: (distance =) $3.0 \times 10^8 \times 365(\frac{1}{4}) \times 24 \times 3600$ Allow 1 mark for bald 9.48×10^{15} (m)
	(b)		Correct labelling of 1 pc, 1 AU and 1"	B1	Allow: 'hypotenuse' labelled as 1 pc
	(c)	(i)	(distance =) $9.5 \times 10^{15} \times 2.1 \times 10^{7}$ (m) or 2.0×10^{23} (m) (distance in pc =) $2.0 \times 10^{23}/3.1 \times 10^{16}$ distance = 6.4×10^{6} (pc)	C1 A1	Possible ecf from (a)
		(ii)	(time =) $10^{44}/4 \times 10^{26}$ (s) or 2.5×10^{17} (s) (time =) $2.5 \times 10^{17}/3.16 \times 10^{7}$ time = 7.9×10^{9} years	C1 A1	Allow : 1 sf answer of 8×10^9 years
	(d)		 Any <u>one</u> from: Very dense / infinite density / very small / singularity Any <u>one</u> from: (Very strong gravitational field therefore) light cannot escape from it / curves space / slows down time / emits Hawking radiation 	B1 B1	
			Total	8	

Q	Question		Answer	Marks	Guidance
11	(a)	(i)	$H_{0} = 1/\text{age}$ $H_{0} = 1/(13.7 \times 10^{9} \times 3.16 \times 10^{7})$ $(H_{0} =) 2.31 \times 10^{-18} (\text{s}^{-1})$ $(H_{0} =) \frac{2.31 \times 10^{-18} \times 3.09 \times 10^{16} \times 10^{6}}{10^{3}}$ Hubble constant = 71.4 (km s ⁻¹ Mpc ⁻¹)	C1 C1 A1	Allow: 2 sf answer Special case : Using $H_0 = 1/13.7 \times 10^9 = 7.30 \times 10^{-11} (y^{-1})$
					gives an answer of 2.26×10^9 (km s ⁻¹ Mpc ⁻¹) – allow 1 mark
		(ii)	$v = H_0 d$ (v =) 71.4 × 50 or 3.57 × 10 ³ (km s ⁻¹) or 3.57 × 10 ⁶ (m s ⁻¹)	C1	Possible ecf from (a)
			$\frac{\Delta\lambda}{\lambda} = \frac{3.57 \times 10^6}{3.0 \times 10^8} (= 1.19 \times 10^{-2})$	C1	
			$\Delta \lambda = 656 \times 1.19 \times 10^{-2}$ or $\Delta \lambda = 7.80$ (nm)	C1	
			wavelength = 656 + 7.80		
			wavelength = 664 (nm)	A1	Allow: 2sf answer
	(b)		Big bang: Creation of the universe (from which space/time evolved) (AW)	B1	
			 Any <u>three</u> from: 1. (At the start) the universe was hot / infinitely dense 2. Expansion of the universe led to cooling 3. The (current) temperature of universe is 2.7 K / 3 K 4. (The universe as a black body) is associated with microwaves at this temperature (AW) or The (wavelength of the) gamma radiation stretched to 	B1 × 3	Not : The universe now has microwaves. (The microwaves must be linked with current temperature)
			microwaves (by the expansion). QWC: (Cosmological principle is supported because) MBR is isotropic	B1	Allow: Microwaves have the same intensity in all directions

G485

Question	Answer	Marks	Guidance
(c)	(For an open / flat universe) Further expansion will lead to cooling / temperature lower than 3K / temperature tend to absolute zero (AW)	B1	Alternative : Temperature (will eventually) increases if <u>closed</u> universe B1
	The wavelength (of the EM radiation) gets longer / frequency (of the EM radiation) gets smaller / energy of photons decreases / microwaves become radio waves	B1	The wavelength (of EM radiation) get smaller B1
(d)	Graph starting from origin and having a shape consistent with either open or accelerated universe	B1	Not a straight line
	Total	15	

PMT

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 A _____

